Advanced search
Start date
Betweenand


In vitro and in situ effect of starch and sucrose on biofilm composition and on root dentine demineralization in situ

Full text
Author(s):
Carolina Patrícia Aires
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Odontologia de Piracicaba
Defense date:
Examining board members:
Jaime Aparecido Cury; Marcello Iacomini; Flavio Fernando Demarco; Marinês Nobre dos Santos; Mônica Campos Serra
Advisor: Jaime Aparecido Cury; Hyun Koo
Abstract

Sucrose is the most cariogenic of the dietary carbohydrates but there is evidence that its cariogenicity is enhanced when used in combination with starch. This could be explained by changes in biofilm matrix, since an in vitro study showed that a novel extracellular polysaccharide (EPS) is synthesized by glicosiltransferase (GTF) B of S. mutans in presence of sucrose and starch hydrolysates. However, this should be confirmed in biofilms since the effect of this novel polysaccharide could not be evidenced when different GTFs from S. mutans and from other bacteria are synthesized simultaneously. In addition, the cariogenicity of starch-sucrose combination is well established for enamel but not for dentine. Also, evidence is still lacking on the cariogenicity of starch for root dentine, and root caries is a current concern considering the decline of caries, higher tooth retention and the increase of the life expectancy for populations. Thus, the aim of this study was to evaluate the influence of starch, sucrose and their combinations in in vitro and in situ biofilms. In vitro, S. mutans biofilms were formed on hydroxyapatite discs in presence of starch, sucrose or their combination. In situ, the cariogenicity of starch-sucrose association was tested by a crossover study and during each phase root dentine slabs were submitted extraorally to solutions of starch, sucrose or starch-sucrose association. In vitro and in situ biofilms were analyzed for biochemical and microbiological composition, and root dentine caries was evaluated in situ. In vitro biofilms formed in presence of starch-sucrose association showed distinct EPS composition in relation to those formed in the presence of isolated sugars, but the same trend was not evidenced in situ. In relation to gtfBCD expression, promising preliminary results were found, but they were distinct for in vitro and in situ studies. Starch was moderately cariogenic for dentine in comparison to sucrose but starch-sucrose association was not more cariogenic than sucrose alone. In conclusion, although starch-sucrose association could enhance the cariogenicity of the biofilm formed, this trend was not confirmed in situ for root dentine since the association was not more cariogenic than sucrose alone (AU)