Advanced search
Start date
Betweenand


Functional characterization of important genes in xylose metabolism of the yeasts Rhodotorula dairenensis and Pseudozyma brasiliensis sp. nov.

Full text
Author(s):
Thuanny Andrade Borges
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
Gustavo Henrique Goldman; Suzan Pantaroto de Vasconcelos; Rosana Goldbeck
Advisor: Juliana Velasco de Castro Oliveira; Gustavo Henrique Goldman
Abstract

Full utilization of lignocellulosic biomass is one of the prerequisites to make the process of second generation ethanol economically competitive. However, the fermentation of sugars available in cellulosic biomass presents a unique challenge due to the presence of other sugars besides glucose, such as xylose and arabinose, which are not fermentable by Saccharomyces cerevisiae, the main yeast used in the industry. In yeasts, the conversion of D-xylose to D-xylulose occurs in two steps: first D-xylose is reduced to xylitol by the enzyme D-xylose reductase (XR), and then D-xylitol is oxidized to D-xylulose by the enzyme xylitol dehydrogenase (XDH). In S. cerevisiae, these two enzymes have different cofactors, thereby causing a redox imbalance in the cell, preventing the use of pentoses anaerobically. An alternative to S. cerevisiae can produce ethanol by these sugars is genetically modifying it with genes derived from microorganisms that naturally carry out this conversion. Thus, this project characterized the yeasts Rhodotorula dairenensis TAB01 and Pseudozyma brasiliensis GHG001, isolated from the gut of insects pests of sugarcane, through the analysis of genes expression of xyl1 and xyl2 which encoding respectively, the XR and XDH enzymes and measured the enzymatic activity of the same. Additionally, was evaluated the overexpression of these in S. cerevisiae industrial strains PE-2 and PE-2 XKS1 overexpressing xks1 gene of S. cerevisiae, which encodes the enzyme xylulokinase (XK). P. brasiliensis GHG001 and R. dairenensis TAB01 shown promise for this study as they are great xylose assimilators and their assimilating xylose genes are expressed in the presence of this sugar. XR and XDH were heterologously expressed in S. cerevisiae, generating strains Rd PE, PE Pb, PE-XKS Rd and PE-XKS Pb, which were tested for the ability to utilize xylose for growth. However, these recombinant strains were unable to utilize xylose as sole carbon source, which shows how important is the imbalance of cofactors of the metabolize xylose enzymes. Moreover, due to a remarkable biotechnological importance, has also been characterized a xylanolytic enzyme produced by P. brasiliensis GHG001 which showed a high activity, yet unreported by other eukaryotic microorganism. This xylanase belonging to family GH11, showed pH and temperature optima equal to 4 and 55°C, respectively, and its secondary structure consists of ?-sheets. This enzyme has influence of some ions such as Ca2+ and showed a sigmoidal kinetic behavior, characteristic of allosteric enzymes. From xylan, the xylanase produces xylooligosacharides which can be used industrially as prebiotics, which together with other applicability of this enzyme in the industry, demonstrate their high biotechnological potential (AU)

FAPESP's process: 12/00080-1 - Análises de expressão de genes importantes no metabolismo de xilose das leveduras Rodothorula dairenensis e Pseudozyma hubeienses e de outros fungos isolados a partir do trato intestinal de insetos que parasitam a cana-de-açúcar
Grantee:Thuanny Andrade Borges
Support Opportunities: Scholarships in Brazil - Master