Advanced search
Start date
Betweenand


Electronic properties and transport processes in nano-structured semiconductor materials

Full text
Author(s):
Pablo Roberto Fernández Siles
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Física Gleb Wataghin
Defense date:
Examining board members:
Gilberto Medeiros Ribeiro; Luiz Eduardo Moreira Carvalho de Oliveira; Carlos Manuel Giles Antunez de Mayolo; Bernardo Ruegger almeida Neves; Angelo Malachias de Souza
Advisor: Gilberto Medeiros Ribeiro; Mônica Alonso Cotta
Abstract

As the dimension and size of electronic devices continue to be reduced, confinement and transport mechanisms at nanometric scale remains nowadays as a great challenge in Solid State Physics. Thus, the study and understanding of transport processes in amorphous and nanocrystalline materials ¿ characterized by the coupling of electronic and ionic behavior ¿ becomes highly relevant currently. Technological applications comprise for example the development of sensors (TiO2) and the fabrication of new memory devices with non volatile characteristics ¿ memristor devices. This thesis is intended to study transport properties in semiconducting nanostructures. Two different kinds of structures are investigated: i) self-assembled InAs quantum dots grown on GaAs substrates and ii) memristor devices produced by means AFM Local Anodic Oxidation Lithography (LAO), considering planar Ti-TiO2-Ti structures. Considering structural (tunneling barrier) as well as experimental factors (temperature, frequency and gate bias), Capacitance Spectroscopy is implemented here. This technique supplies information for the determination of transport mechanisms, density os states, concentration of impurities etc, considering the III-V system (InAs/GaAs). In the case of the TiO2 thin films are prepared by means of Sputtering DC. A characterization process permits to point out optical properties, by means of Elipsometry, structural properties, by means of Atomic Force Microscopy and X-Ray Diffraction, and chemical characteristics, by means of X-Ray Photoelectron Spectroscopy (XPS) and Rutherford Backscattering (RBS). Finally, an AFM Local Anodic Oxidation lithography technique permits to design metal-oxide-metal structures. These structures are characterized by frequency-dependent conductive switching states ¿ typical signature of memristive behavior. Quantum dots studies permit to perform a calibration of transport mechanisms by means of Capacitance Spectroscopy. On the other hand, the planar memristor devices fabricated in this work by means of Local Anodic Oxidation present important rectifying electrical characteristics with non volatile behavior. This memristor approach permits to put forward in the understanding and fabrication of a new family of devices with the potential to become a new generation of non volatile memory devices (AU)

FAPESP's process: 05/04643-7 - Electronic properties of isolated nanostructures small ensembles
Grantee:Pablo Roberto Fernández Siles
Support Opportunities: Scholarships in Brazil - Doctorate