Advanced search
Start date
Betweenand


Genetic diversity and mating systems in natural populations of two pioneers tree species.

Full text
Author(s):
Luciano Arruda Ribas
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba. , ilustrações, tabelas.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Paulo Yoshio Kageyama; Acelino Couto Alfenas; Alexandre Magno Sebbenn; Elizabeth Ann Veasey; Roland Vencovsky
Advisor: Paulo Yoshio Kageyama
Field of knowledge: Biological Sciences - Genetics
Indexed in: Banco de Dados Bibliográficos da USP-DEDALUS; Biblioteca Digital de Teses e Dissertações - USP
Location: Universidade de São Paulo. Biblioteca Central da Escola Superior de Agricultura Luiz de Queiroz ; t634.973962; R482d; 82118
Abstract

The knowledge about the breeding system and the genetic structure of populations of tree species is of great importance in order to plan their management and conservation. Pioneer tree species are more and more frequent inside and outside remaining forest fragments. Trema micrantha is one of the first tree species to be established in abandoned areas and Cecropia pachystachya is a pioneer dioecious tree and selectively adapted to wet soils. Both species are pollinated by wind and produce seeds that are dispersed by various animals species. We studied the diversity, the genetic structure and the mating system of both pioneer species populations. The seed bank of T. micrantha was also evaluated as a potential genetic buffer for this species. Populations were collected in the "Estação Ecológica dos Caetetus" (Gália, São Paulo State, Brazil) and in the "Reserva Florestal de Santa Genebra" (Campinas, São Paulo State, Brazil), where 177 plants of T. micrantha, distributed into six and five subpopulations, and 178 plants of C. pachystachya, distributed into two and three subpopulations were respectively sampled from both fragments. Ten seeds per plant and 24 plants per population were germinated to generate progeny arrays used in the mating system analyses. The estimates for the genetic diversity genetic parameters in the plant populations of the dossel were obtained from eight polymorphic isozyme loci with 20 alleles for T. micrantha and seven isoenzymatic loci with 17 alleles for C. pachystachya. Similarly, 13 loci with 30 alleles for T. micrantha and seven loci with 17 alleles for C. pachystachya were used in the mating system study. The results showed that populations of both species have low levels of inbreeding ( = -0.204 and 0.066 for T. micrantha; = -0.052 and 0.049 for C. pachystachya, in both fragments, respectively) and high diversity ( fˆ fˆ e Hˆ = 0.373 and 0.392 for T. micrantha; e Hˆ = 0.355 and 0.335 for C. pachystachya, in both fragments). The genetic divergence among populations was lower than among subpopulations ( = 0.026 and -0.007; = 0.086 and 0.068, for C. pachystachya and T. micrantha, respectively). T. micrantha presents a mixed mating system, with preference to outcrossing ( = 0.966 and 0.819, in both fragments) and is subject to variations in the inbreeding frequency and high rates of biparental mating ( = 0.653 and 0.605 in both fragments, respectively). The estimates obtain for C. pachystachya did not correspond to the expectations of a dioecious species ( = 0.816 and 0.794 in both fragments). A significant proportion of related individuals were observed ( p θˆ SP θˆ m tˆ p rˆ m tˆ s t m t ˆ ˆ − = 0.072 and 0.128, both fragments), indicating a spacial structure of individuals under the species natural condition. The estimates showed that the great majority of C. pachystachya progenies are composed of full-sib matings ( = 0.868 and 0.990 in both fragments), resulting from biparental matings. Besides, the results suggest that a tough competition in the phases of germination and seedling development during the regeneration of T. micrantha, as well as the spatial distribution in gaps and the efficient gene flow are important in order to maintain high rates of genetic diversity in its populations. (AU)