Study of the production, composition and outflow of intraocular media in standard ...
Role of GABA neurotransmitter in chromatic processing of outer nuclear layer in tu...
![]() | |
Author(s): |
Christina Joselevitch
Total Authors: 1
|
Document type: | Master's Dissertation |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Instituto de Psicologia (IP/SBD) |
Defense date: | 1999-09-09 |
Examining board members: |
Dora Selma Fix Ventura;
Ricardo Gattas;
Luiz Carlos de Lima Silveira
|
Advisor: | Dora Selma Fix Ventura |
Field of knowledge: | Humanities - Psychology |
Indexed in: |
Banco de Dados Bibliográficos da USP-DEDALUS;
Index Psi Teses - IP/USP![]() |
Location: | Universidade de São Paulo. Biblioteca do Instituto de Psicologia; BF241; J83v |
Abstract | |
In the last decades a number of experiments in vertebrates has demonstrated the ability of some of these animals to discriminate ultraviolet light. Among them, the goldfish (Carassius auratus), considered a good model in vision research, presented in behavioural experiments high discrimination rates in the violet and blue spectral regions, which could only be accomplished through an additional UV receptor (Neumeyer, 1985; Hawryshyn & Beauchamp, 1985; Neumeyer & Arnold, 1989; Neumeyer, 1992; Fratzer, Dörr & Neumeyer, 1994). These results were confirmed by microspectrophotometrical (Bowmaker, Thorpe & Douglas, 1991) and electrophysiological (Palacios et al., 1998) determinations of the existence of cones with specific photopigments with a maximum in the UV region of the light spectrum. However, to date there are no data concerning the spectral coding of this input in second order neurons. Furthermore, the role of the retinal horizontal cells in chromatic processing remains under debate. The present study aimed at investigating the contribution of the UV input to the electrophysiological response profiles of the cone-driven horizontal cells, as well as determining which neurons in the outer retina of the goldfish could subserve vision in the UV range, as observed behaviourally. For that purpose, intracellular recordings of horizontal and bipolar cells under monochromatic stimuli of different intensities, diameters and wavelengths were obtained in order to determinetheir action spectra, receptive field sizes and characteristics as well as the possible interactions between them and the different cone systems. Mono-, bi- and triphasic horizontal cells always hyperpolarised in the UV spectral range: there was no chromatic opponency between the UV and the blue zones in any of these cell types. We have also failed to find a tetraphasic horizontal cell. We observed through chromatic adaptation experiments that the electrophysiological responses recorded from mono- and biphasic horizontal cells are the result of interactions between the red, green and blue cone systems. No relevant UV input to these cells could be found. Finally, we found a bipolar cell type with spectral opponency between the UV and blue regions, which could be the neural basis of the discrimination observed behaviourally. Colour-opponent channels are thought to be necessary for colour discrimination, and the absence of a horizontal cell type with opponency between the UV and blue spectral regions provides further evidence that this cell type might not play a major role in the chromatic processing in the goldfish retina. Since this opponency pattern was found in a bipolar cell, we think that this cell type, and not the horizontal cells, might underlie the coding of the UV information in this animal. This idea is in good agreement with some recent literature data that ascribe the horizontal cells a role in colour constancy and simultaneous colour contrast phenomena,leaving the function of colour codification to the bipolar cells (Kamermans, Kraaij & Spekreijse, 1998) (AU) |