Analysis of central and peripheral muscle metabolism and adjustments on dynamic ve...
![]() | |
Author(s): |
Julio César Crescencio
Total Authors: 1
|
Document type: | Master's Dissertation |
Press: | Ribeirão Preto. , gráficos, ilustrações. |
Institution: | Universidade de São Paulo (USP). Faculdade de Medicina de Ribeirão Preto (PCARP/BC) |
Defense date: | 2002-10-24 |
Examining board members: |
Lourenco Gallo Junior;
Luiz Eduardo Barreto Martins;
Antonio Carlos da Silva
|
Advisor: | Lourenco Gallo Junior |
Field of knowledge: | Health Sciences - Medicine |
Indexed in: | Banco de Dados Bibliográficos da USP-DEDALUS; Biblioteca Digital de Teses e Dissertações - USP |
Location: | Universidade de São Paulo. Biblioteca Central do Campus de Ribeirão Preto; FMRP/Crescêncio, Júlio César |
Abstract | |
The technological achievements in last decade made possible to use in laboratory facilities digital computerized equipments that allowed the acquisition, storage ande processing of cardiorespiratory variables during exercise on real time basis. Also, as a consequence of these advances, it was possible to apply mathematical models to represent physiological responses under experimental conditions. The present study must be understood in the context above described. It had the the purpose to compare the ventilatory anaerobic threshold (VAT) during dynamic exercise, by four different methods. Two of them are based on visual analyses made on graphic plots of computer monitor, and two others are based on application of mathematical models. Twenty four active and sedentary healthy men were studied in the present project (mean age 33.8 ± 9.2 years). All of them were studied in seated position using an electronic braked cycle ergometer (CORIVAL 400 Quinton), that allowed the application of ramp powers using a computer software incorporated to the ergoespirometric system (MedGraphics CPX/D). This system allowed the recording and processing of all cardiorespiratory variables usually needed in exercise physiology, as follow: O2 uptake (VO2), CO2 production (VCO2), minute respiratory ventilation (VE), respiratory equivalent ratio (RER), VE/VO2, VE/VCO2, and end tidal expiratory values of O2 (PET O2) and CO2 (PET CO2), as well as, power and rotation speed cycle ergometer values. The exercise protocol included a four minute period at a minimum power (3 - 4 Watts) followed by a ramp (15 35 Watts) adjustable individually on the basis of sex, age and weight of volunteers the peak power was limited by the occurrence of unpleasant symptons or when the heart rate reached a target age value. The VAT values during exercise were measured by using four different methods: 1- visual loss of linearity related to time (VCO2 VIS. M.); 2- visual response of PET O2 at lowest value before the progressive increase in exercise; 3- automatic detection using MedGraphics algorithm; 4- semiautomatic method using bisegmentar mathematical models (Linear-Linear and Linear-Quadratic) applied to VCO2 and VE in relation to time (VCO2 L-L M.; VCO2 L-Q M.; VE L-L M.; VE L-Q M.) and to VCO2 in relation to VO2 during exercise (VCO2 vs. VO2 L-L M.; VCO2 vs. VO2 L-Q M.). The bisegmentar models were based on the measure of the square sum of residual values related to fitting of two functions, Linear-Linear and Linear-Quadratic, appling the least-square method. After qualitative and quantitative analyses of data, it was possible to reach to the following conclusions: 1- the VAT values measured by VCO2 and PET O2 visual methods were higher (p<0.05) than the ones obtained by Automatic and semi automatic methods; 2- the Visual VCO2 compared to PET O2 method, presented a better performance when VO2 and power values are represented by regression lines; 3- the VAT values obtained by Automatic and semiautomatic methods were not statistically different and have shown lower values when compared to visual methods (VCO2 and PET O2); 4- comparing the performance of the all bisegmentar methods tested, only the VCO2 L-L related to time was useful for measuring the VAT; 5- compared to Automatic method, the VCO2 L-L method could be applied in higher percentage of cases and presented parameters of regression lines (inclination and intercept) closer to visual methods; 6- the semiautomatic method applied to the response VCO2 in relation to time has shown a promising method that if fully automatic may be useful to calculate VAT in men. (AU) |