Advanced search
Start date
Betweenand


Synergistic delineation and recognition of objects in images with applications in medicine

Full text
Author(s):
Paulo Andre Vechiatto de Miranda
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Computação
Defense date:
Examining board members:
Alexandre Xavier Falcão; Marcel Parolin Jackowski; Roberto Marcondes Cesar Junior; Hélio Pedrini; Siome Klein Goldenstein
Advisor: Alexandre Xavier Falcão
Abstract

Segmenting an image consists of partitioning it into regions relevant for a given application (e.g., objects and background). The image segmentation is one of the most fundamental and challenging problems in image processing and computer vision. The segmentation problem represents a significant technical challenge in computer science because of the difficulty of the machine in extracting global informations about the objects in the images (e.g., shape and texture) counting only with local information (e.g., brightness and color) of the pixels. Image segmentation involves object recognition and delineation. Recognition is represented by cognitive tasks that determine the approximate location of a desired object in a given image (object detection), and identify a desired object among candidate ones (object classification), while delineation consists in defining the exact spatial extent of the object. Effective segmentation methods should exploit these tasks in a synergistic way. This topic forms the central focus of this work that presents solutions for interactive and automatic segmentation. The automation is achieved through the use of discrete models that are created by supervised learning. These models employ recognition and delineation in a tightly coupled manner by the concept of Clouds. We demonstrate their usefulness in the automatic MR-image segmentation of the brain (without the brain stem), the cerebellum, and each brain hemisphere. These structures are connected in several parts, imposing serious challenges for segmentation. The results indicate that these models are fast and accurate tools to eliminate user's intervention or, at least, reduce it to simple corrections, in the context of brain image segmentation. (AU)