Advanced search
Start date
Betweenand


Convolution equations on spaces of entire functions of a given type and order

Full text
Author(s):
Vinicius Vieira Favaro
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica
Defense date:
Examining board members:
Mário Carvalho de Matos; Jorge Mujica; Ary Orozimbo Chiacchio; Antonio Roberto da Silva; Daniel Marinho Pellegrino
Advisor: Mário Carvalho de Matos
Abstract

In this work we introduce the spaces of (s; m (r , q))-summing functions of a given type and order defined in E, and the spaces of (s; (r, q))-quasi-nuclear functions of a given type and order defined in E, and we prove that the Fourier-Borel transform identify the dual of the space of (s; (r; q))-quasi-nuclear functions of a given type and order defined in E, with the space of (s' ; m (r'; q'))-summing functions of a corresponding type and order defined in E'. We also prove division theorems for (s; m (r; q))-summing functions of a given type and order and division theorems involving the Fourier-Borel transform. As a consequence we prove the existence and approximation results for convolution equations on the spaces of (s; (r; q))-quasi-nuclear functions of a given type and order (AU)