Advanced search
Start date
Betweenand


Alpha motoneuron imput changes in dystrophic MDX mice after sciatic nerve transection

Full text
Author(s):
Gustavo Ferreira Simões
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
Alexandre Leite Rodrigues de Oliveira; Rosalia Mendez Otero; Benedito Barraviera; Valéria Paula Sassoli Fazan; Fausto Viterbo de Oliveira Neto
Advisor: Alexandre Leite Rodrigues de Oliveira
Abstract

Currently, much is known about the muscular involvement in DMD, but few studies have focused on the effects on the central nervous system (CNS), specifically in the microenvironment of spinal motor neurons. It is known that during the course of the disease, the axon terminal at the neuromuscular junction, enters a cycle of denervation (retraction) and reinnervation (sprouting). The possibility of modulation of MHC I presents itself as a new strategy to positively influence the process of synaptic plasticity after injury Peripheral Nervous System (PNS) and CNS. Such modulation may be accomplished through the use or development of special drugs. The granulocyte colony-stimulating factor (G-CSF) is a glycoprotein which was first described more than twenty years, has approval from ANVISA (Agência Nacional de Vigilância Sanitária) and is commonly used to treat neutropenia, or bone marrow transplants. The G-CSF has a multimodal neuroprotective effect l, including the anti-apoptotic activity in neurons, regeneration of vascularization, anti-inflammatory effect and stimulation of endogenous neurogenesis, being able to act effectively in the process of regeneration of the nervous system. In this study, we used MDX mice. The mice were divided into 4 groups (axotomy + G-CSF; axotomy, Control + G-CSF and Control), with n = 10. Included immunohistochemistry to the placebo group, where the animals received a daily dose of 200?m, subcutaneously, glucose 25%. Our results indicate that reduction of synapses in the alpha motoneurosn and increased astrogliosis , either due to partial disconnection between the target organ and the neuronal body during the cycles of degeneration /regeneration muscle that occur from first weeks of life in MDX mice. These cycles can pass retrogradely in alpha motoneurons cell bodies, causing a series of changes called chromatolysis. The sciatic nerve axotomy results in a significant increase of MHC I expression in both strains studied. However, in MDX strain, this increase is smaller, compared to C57BL/10. After treatment with G-CSF the expression of MCH I got bigger compared to untreated groups, and this may indicate an active role in the regenerative potential of the drug after injury. Also we suggest that while the animals present MDX a smaller motor function compared to control animals, the results indicate that treatment with G-CSF is capable of reducing the inflammatory effects and act positively on peripheral nerve regeneration process after nerve crush sciatic. Also our results indicate that treatment with G-CSF is able to reduce the inflammatory effects and act positively on peripheral nerve regeneration process after nerve crush sciatic (AU)

FAPESP's process: 09/05565-0 - Alpha motoneuron synaptic plasticity in MDX mice after treatment with granulocyte colony-stimulating factor (G-CSF)
Grantee:Gustavo Ferreira Simoes
Support Opportunities: Scholarships in Brazil - Doctorate