Advanced search
Start date
Betweenand


Blockwise noncoherent M-APSK channel: capacity and coding scheme for iterative receivers

Full text
Author(s):
Daniel Carvalho da Cunha
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Elétrica e de Computação
Defense date:
Examining board members:
Jaime Portugheis; Bartolomeu Ferreira Uchoa Filho; Dalton Soares Arantes; Reginaldo Palazzo Júnior; Weiler Alves Finamore; Renato Baldini Filho
Advisor: Jaime Portugheis
Abstract

Coherent reception is not possible for many bandpass transmission systems. In some of these systems, it is commonly assumed that the unknown carrier phase rotation is constant over a block of L symbols and it is independent from block to block. This channel is denominated blockwise noncoherent channel. The blockwise noncoherent channel capacity using M-ary Amplitude and Phase Shift Keying (M-APSK) modulation is investigated. The characterization of the input distribution achieving capacity is presented. Upper and lower bounds to this capacity are derived. In addition, an algorithm for simultaneously computing the input distribution and the M-APSK constellation parameters which maximizes the mutual information with coherent reception is developed. The investigation of the capacity showed that as L increases, the noncoherent capacity converges to the coherent one. Besides that, the use of differential encoding makes this convergence faster. Motivated by this fact, a bandwidth efficient coding scheme is presented. This scheme is composed of a serial concatenation of a Low-Density Parity Check (LDPC) code, an interleaver, and a differential encoder. For this scheme, the iterative receiver is described by a factor graph. The scheme performances for different lengths of LDPC codes are compared. (AU)