Advanced search
Start date
Betweenand


Study of stochastic optimization algorithms for the evaluation of oxidation of acetaldehyde

Full text
Author(s):
Leonel Moreno Molano
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Química
Defense date:
Examining board members:
Rubens Maciel Filho; Charles Dayan Farias de Jesus; Reginaldo Guirardello
Advisor: Rubens Maciel Filho; Caliane Bastos Borba Costa
Abstract

Green routes used for the production of chemical products are nowadays of great interest worldwide. The need to develop and study chemical processes which are entirely independent on petrochemical route is urgent. Acetaldehyde is an important component in many chemical processes, and can be obtained by the oxidation of bioethanol. However, the conversion of bioethanol to acetaldehyde is highly dependent on the air/ethanol ratio and temperature in the reactor feed. At low air/ethanol ratios, the conversion is lower, but the separation of products is cheaper, in energetic terms, due to the lower insertion of nitrogen into the process. To obtain higher conversions, high feed ratios are required, but it turns more expensive the separation process because of the great amount of nitrogen in the process. The present work deals with the conceptual design of an optimized acetaldehyde production plant, through the oxidation of bioethanol at Fe-Mo catalysts. In order to perform the plant design and optimization, a detailed mathematical model is used to simulate the reactor, in FORTRAN language. To calculate the separation energy cost, designed with the commercial simulator. The optimization of operating conditions was made with Genetic Algorithm, Particle Swarm Algorithm and Ant Colony Optimization stochastic methods, due to the fact that the problem constraints are non-linear. In general, proves are search space for an optimal value function and used as operating conditions the temperature in the feeding of 156,27°C, Molar ratio Air / ethanol 16.6 0 and gas flow in the feeding of 3660 kg/m2h, requiring 99,07 kJ /kg of acetaldehyde to separate the products (AU)

FAPESP's process: 07/06808-9 - Study of stochastic optimization algorithms for evaluation of ethanol oxidation to Acetaldheyde
Grantee:Leonel Moreno Molano
Support Opportunities: Scholarships in Brazil - Master