Advanced search
Start date
Betweenand


Evolving participatory learning fuzzy modeling

Full text
Author(s):
Elton Mario de Lima
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Elétrica e de Computação
Defense date:
Examining board members:
Fernando Antonio Campos Gomide; Benjamim Rodrigues de Menezes; Takaaki Ohishi
Advisor: Fernando Antonio Campos Gomide; Rosangela Ballini
Abstract

This work introduces an approach to develop evolving fuzzy rule-based models using participatory learning. Participatory learning assumes that learning and beliefs about a system depend on what the learning mechanism knows about the system itself. Participatory learning naturally augments clustering and yields an e_ective unsupervised fuzzy clustering algorithms for on-line, real time domains and applications. Clustering is an essential step to construct evolving fuzzy models and plays a key role in modeling performance and model quality. A least squares recursive approach to estimate the consequent parameters of the fuzzy rules for on-line modeling is emphasized. Experiments with the classic Box-Jenkins benchmark are conducted to compare the performance of the evolving participatory learning with the evolving fuzzy system modeling approach and alternative fuzzy modeling and neural methods. The experiments show the e_ciency of evolving participatory learning to handle the benchmark problem. The evolving participatory learning method is also used to forecast the average hourly load of an electric generation plant and compared against the evolving fuzzy system modeling using actual data. The results confirm the potential of the evolving fuzzy participatory method to solve real world modeling problems. (AU)