Non-conventional spectroscopy of low-dimension semiconductor films
![]() | |
Author(s): |
Lázaro Aurélio Padilha Junior
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | Campinas, SP. |
Institution: | Universidade Estadual de Campinas (UNICAMP). Instituto de Física Gleb Wataghin |
Defense date: | 2006-09-18 |
Examining board members: |
Carlos Henrique de Brito Cruz;
Mônica Alonso Cotta;
Hugo Luis Fragnito;
Franklin Massami Matinaga;
Lucio Hora Acioli
|
Advisor: | Carlos Henrique de Brito Cruz |
Abstract | |
In this thesis the linear and non-linear optical properties of direct band-gap semiconductors, CdTe and CdSe, quantum dots are studied at femtosecond time scale, mainly those properties important for applications in all-optical switching such as response time and third order susceptibility. The photo-excited electron recombination processes are investigated as well their response time using a theoretical model considering the influence of the surface trapping states and the Auger recombination. The third order nonlinear optical properties, two-photon absorption and optical Kerr effect, are studied by different experimental techniques: Z-scan, pump and probe and two-photon induced photo-luminescence. Strong influence from the nanocrystals size is observed, especially on the two-photon absorption spectra. Theoretical models based on the effective mass approximation and Kane¿s p k model are used to describe the influence of the quantum confinement on the degenerate and non-degenerate two-photon absorption processes. The importance of the hole band mixing is easily seen from the two-photon absorption fitting. Finally, all-optical switching by absorption saturation and polarization control are demonstrated for CdTe quantum dots in doped glass (AU) |