Advanced search
Start date
Betweenand


Entanglement and matrix product states in quantum phase transitions

Full text
Author(s):
Erika Abigail Ochoa Becerra
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Física Gleb Wataghin
Defense date:
Examining board members:
Fernando Alvarez; Clodomiro Alves Junior; Antonio Ricardo Zanatta; Lisandro Pavie Cardoso; Maurício Urban Kleinke
Advisor: Fernando Alvarez
Abstract

The present thesis treats the stu y of the physical resultant properties in metallic systems with nano-structure surfaces by the bombar ment with noble gas an subsequently nitri e with techniques base on plasma. The search for new con itions of treatment that increase the spee of diffusion of the nitrogen is of great interest for the modification of metal surfaces. For this, the pre-treatment of the material surface, through methods of refinement of the grains at the surface, is fundamental in the improvement of the incorporation of nitrogen in the material. This work aims at the study of systems base on iron, especially steels of technological interest, with surfaces refine up to the nanometric scale an subjecte to the nitriding process. In this case, the surface of the considere sample can be nano - structure by ionic bombar ment with noble gases ("atomic attrition") an subsequently nitride using bundle of ions. The material chosen for the present work is the steel AISI 4140, a steel of low alloy. The superficial treatment ("atomic attrition") prior to the process of nitriding makes possible the increase of the content of nitrogen in epth allowing still that nitriding could be carrie out to relatively lower temperatures (T ~ 300 °C). The characterization of the samples pre-treate an / or nitride is carrie out in-situ by spectroscopy of photo-emitte electrons guaranteeing singular conditions for the study of the phenomenon of nano-structuring an its influence in the nitrogen iffusion. Other usual techniques of characterization use were nano - in dentation, X-rays (in our group an at LNLS), optical an electronic microscopy. The results indicate the success in the nano - structuring of the sample surface for the formation of ways of quick diffusion of nitrogen an so increasing the resultant har ness of the material (AU)