Analysis of differential gene expression of dorsal ganglion root cell in a model o...
![]() | |
Author(s): |
Demilto Yamaguchi da Pureza
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Faculdade de Medicina Veterinária e Zootecnia (FMVZ/SBD) |
Defense date: | 2011-03-23 |
Examining board members: |
Antonio Augusto Coppi Maciel Ribeiro;
Silvia Renata Gaido Cortopassi;
Márcia Rita Fernandes Machado;
Laura Beatriz Mesiano Maifrino;
Angelo João Stopiglia
|
Advisor: | Antonio Augusto Coppi Maciel Ribeiro |
Abstract | |
Diabetes is associated with several complications, among them, diabetic neuropathy, characterized by anatomical and functional injuries of peripheral somatic and autonomic neurons. The experimental model of diabetes induced by streptozotocin has been used in diabetes complication study. In this way, the aim of this study was to evaluate by stereological methods the microstructure of the celiac ganglion in diabetic rats (Diabetes mellitus) type I induced by induced by streptozotocin (STZ) submitted to exercise training. For this, twenty adult male rats were used, five healthy sedentary (HS), five healthy trained (HT), five diabetic sedentary (DS) and five diabetic trained (DT). Diabetes was induced by a single injection of STZ (60 mg/Kg, ev). The maximal exercise test was performed in all groups to check their physical capacity. The healthy trained and diabetic trained groups were submitted to an exercise training protocol on a treadmill (1 hour/day, 5 days/week, 10 weeks, 60% of the maximum speed on a treadmill test). After ten weeks, a cannula was implanted into the femoral artery into the left ventricle to register the arterial blood pressure (BP) and heart rate (HR). Twenty four hours after cannulation BP and HR were recorded and processed in a data acquisition system (codas, 2KHz). The DS group showed a reduction in body weight (33%), hyperglycemia (279%) and bradycardia with hemodynamic impairment (19%) and hypotension (12%) and reduction in the total number of neurons (26%). After the exercise training protocol, the HT and DT presented an improvement in physical capacity (107% and 75% respectively), despite the DT group have not shown a metabolic improvement (glycemia), it presented a hemodynamic improvement attenuating the bradycardia (16%) and reverted the neuronal loss (25%) in the DS. Thus, the results of this study suggest that physical training has an important role in the treatment of the diabetic autonomic neuropathy. (AU) |