Advanced search
Start date
Betweenand


Ecophysiological evaluation of coffee plants (Coffea arabica L.) in an agroforestry system and in monocrop.

Full text
Author(s):
Ciro Abbud Righi
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Marcos Silveira Bernardes; Luiz Roberto Angelocci; Paulo Henrique Caramori; Jose Laercio Favarin; Luiz Carlos Fazuoli
Advisor: Marcos Silveira Bernardes
Abstract

The main objective of the present work was the better understanding of the ecophysiological interactions within rubber trees (Hevea brasiliensis Müell. Arg.) and coffee plants (Coffea arabica L.). Above and below ground interactions were analyzed as a function of tree distance and consequent competition intensity. The main hypotheses of this research were: 1. Reduction on light availability due to trees affects the coffee plant growth positively by the transpiration reduction and negatively by the net photosynthesis reduction expressed by dry matter accumulation; 2. There are light competition between coffee plants and shade trees, been this proportional to the distance among crops and tree size; 3. The mathematical model used described adequately the light availability to the associated crop and can be an important tool on agroforestry system (AFS) design. The experiment was established in an experimental field belonging to the Dept. of Plant Production - ESALQ/USP at Piracicaba-Brazil (22°42’30" S, 47°38’00" W - altitude 554m) in random blocks with 11 treatments in a "Strip-Plot" design, where interactions intensity between crops were determined by the distances of the coffee plants to the tree. According to the experimental data obtained it was possible to concluded: 1. In the interval of 100 to 45% available irradiance coffee plants did not showed reduction on dry matter accumulation. Further reductions on available irradiance led to reduction on dry matter accumulation directly proportional, as well as to modifications on morphological and physiological characteristics due to its adaptation to these conditions; 2. Shade had a positive effect reducing transpiration per unit of leaf area and per plant. On the other hand had a negative effect rising the transpiration per unit of available irradiance; 3. The mathematical model proposed by Goudriaan (1977) presented a good simulation of the available irradiance to the associated crop, with good approximation between measured and simulated values. So, it availability is related to the distance and size of the shade trees. (AU)