Advanced search
Start date
Betweenand


QTL mapping in a full-sib family of sugarcane using multiple imputation

Full text
Author(s):
Carina de Oliveira Anoni
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Antonio Augusto Franco Garcia; Luiz Alexandre Peternelli; Sonia Maria de Stefano Piedade
Advisor: Antonio Augusto Franco Garcia
Abstract

QTL mapping in sugarcane (Saccharum spp.) is important to understand the genetic architecture of quantitative traits that are important in breeding programs. However, the ocurrence of missing marker phenotypes is common and decrease the power to detect QTL and causes bias in estimates of locations and effects of QTL. Therefore, methods that include missing marker phenotypes should be considered. Our work was aimed at detecting QTL in a full-sib family of sugarcane via interval mapping method using the multiple imputation approach. The mapping population was composed of 220 individuals derived from a biparental cross between IAC95-3018 and IACSP93-3046. The evaluated traits related to yield were: fiber content (Fiber), sugar content (POL), cane yield in kg.plot1 (PC), sugar yield in kg.plot1 (PP). Ten imputation data sets were build using a 1-cM grid to infer pseudomarker genotype along the genetic linkage map. The QTL mapping on the data with imputed pseudomarker genotypes detected 57 QTLs; 14 QTL were obtained for Fiber; 19 for POL; 12 for cane yield and 12 for sugar yied. The LOD Score value and the R2 proportional to the average weight of all pseudomarker realizations at each grid position ranged from 3.82-7.52 and 6.49%- 16.61%, respectively. In general, it was observed that additive and dominance effects were significant, with predominance of additive effects. The application of multiple imputation approach was successful in reducing the bias and increasing the power of QTL detection. Thus, it is believed that the results of this work contribute to future studies to understand the genetic architecture of quantitative traits in sugarcane (AU)

FAPESP's process: 10/06715-3 - Multiple Imputation for QTL mapping in outcrossing species, with applications in sugarcane
Grantee:Carina de Oliveira Anoni
Support Opportunities: Scholarships in Brazil - Master