Advanced search
Start date
Betweenand


Ultrastructure of the female reproductive system and mechanisms of transovarial transmission of endosymbionts of Diaphorina citri Kuwayama, 1908 (Hemiptera: Psyllidae)

Full text
Author(s):
Fábio Cleisto Alda Dossi
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Fernando Luis Cônsoli; Elliot Watanabe Kitajima; Daniela Carvalho dos Santos
Advisor: Fernando Luis Cônsoli
Abstract

Diaphorina citri Kuwayama, 1908 (Hemiptera: Psyllidae) became a serious problem to the citrus industry in São Paulo State once the Huanglongbing disease (greening), which is caused by the bacteria Candidatus Liberibacter sp., was detected. Psyllids are known to harbor endosymbiont microorganisms, which are vertically transmitted to the progeny and play a key role in the nutritional ecology of their hosts. Therefore, we aimed to characterize the morphology of the reproductive system during D. citri development as a tool for further investigation on the symbiont migration from the bacteriome to the reproductive tissues. D. citri has telotrophic ovaries with ovarioles organized in a bouquet, sharing all other characteristics with the remaining Sternorrhyncha. In developed ovarioles, trophocytes seems to lack any membrane delimitation. Only one oocyte develops at a time in the vitellarium, remaining in communication with the trophic chamber by a citoplasmatic brigde, named trophic cord. The morphostructural information reported in here on the D. citri reproductive system shows important similarities with other Sternorryncha. Symbionts associated to the bacteriome of D. citrus migrate to the ovaries and invade the oocytes during ovary maturation, as previously reported for aleyrodids. In this case, symbionts will move within the bacteriocyte as it detaches from the bacteriome and moves through the oocyte follicular epithelium, releasing the contained bacteria into the oocyte. However, symbionts associated to the bacteriome syncitium are relased into the hemocoel through small openings on the bacteriome epithelium, invading the oocyte by a different mechanism. All symbionts that invaded or were discharged into the oocyte aggregate into a balllike symbiont structure at the posterior pole close to the egg pedicel. (AU)