Advanced search
Start date
Betweenand


Graded embeddings of PI-algebras

Full text
Author(s):
Ednei Aparecido Santulo Junior
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica
Defense date:
Examining board members:
Plamen Emilov Kochloukov; Adriano Adrega de Moura; Ivan Chestakov; Vyacheslav Futorny; Henrique Guzzo Junior
Advisor: Plamen Emilov Kochloukov
Abstract

Kemer classified, up to PI-equivalence, the T-prime algebras in the case of characteristic zero, and in his celebrated Tenso r Product Theorem (TPT) he showed that the tensor product of two T-prime algebras considered over a field of characteristic zero, is another T-prime algebra. In this work, a generalization for the last case of the TPT is given using graded identities. The existence of embeddings into the algebras cited on the TPT is also studied. More specifically, necessary and sufficient conditions for the existence of a graded embedding of an algebra satisfying all graded polynomial identities for the matrix algebra with entries in the Grassmann algebra, into a matrix algebra with entries in a supercommutative algebra with unity are found when these algebras are taken over fields of characteristic different from two. Graded identities that generate the graded T-ideals of the n-th tensor power of the Grassmann algebra, of the matrix algebras cited in Kemer's TPT (whose order is a power of two) and of the tensor product between any two of those algebras are provided. As a consequence, Kemer's TPT is derived from those results in the special case when the order of the matrices in the matrix algebras under consideration, is a powers of two (AU)