Advanced search
Start date
Betweenand


Design of damping controllers for electric power systems

Full text
Author(s):
Ricardo Vasques de Oliveira
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Newton Geraldo Bretas; Luís Fernando Costa Alberto; Aguinaldo Silveira e Silva; Marcelo Carvalho Minhoto Teixeira; Luiz Cera Zanetta Junior
Advisor: Newton Geraldo Bretas; Rodrigo Andrade Ramos
Abstract

The present work proposes, as innovation, an upper bound for the output energy of the closed loop system to be used as a performance index in the design of robust controllers to damp low-frequency electromechanical oscillations in electric power systems. The output of the closed loop system is specified so that the output energy corresponds to the accumulated value of the kinetic energy deviation of the closed loop system. The performance index used in the procedure has shown to be suitable to the oscillation problem. The proposed performance index is used in the formulation of a systematic design methodology. The control problem is structured in the form of linear matrix inequalities, allowing a numerical solution to the control problem. The adopted performance index is less costly in terms of computational effort when compared with the traditional minimum damping ratio (performance index usually accepted in power system as small signal stability margin) via regional pole placement in the LMI formulation. This characteristic may be significant to the computational time required for the controller design involving large power system models. The robust damping controller design, based on multimachine models without the infinite-bus assumption, constitutes the second part of this research proposal. The problems inherent to the infinte-bus assumption are solved by means of two approaches which do not use such assumption. The first proposed approach refers to the use of a multimachine model adopting one machine angle of the system as angular reference. The second adopted approach is the incorporation of the primary speed control in the multimachine model regarding to the first approach. Besides solving the problem regarding to the use of infinite-bus assumption, the present work also proposes analyses of such assumption influence in the design of damping controllers. The influence of such assumption, in the design of the controllers, is outlined by means of exposed fundamentals and results obtained with the proposed approaches (AU)