Advanced search
Start date
Betweenand


Robust Kalman filters for discrete-time singular systems

Full text
Author(s):
Aline Fernanda Bianco
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Marco Henrique Terra; João Yoshiyuki Ishihara; Vitor Heloiz Nascimento; Reinaldo Martinez Palhares; Pedro Luis Dias Peres
Advisor: Marco Henrique Terra
Abstract

This thesis considers the optimal robust estimates problem for discrete-time singular dymanic systems. New recursive algorithms are developed for the Kalman filtered and predicted estimated recursions with the corresponding Riccati equations. The singular robust Kalman type filter and the corresponding recursive Riccati equation arer obtained in their most general formulation, extending the results presented in the literature. The quadratic functional developed to deduce this filter combines regularized least squares and penalty functions approaches. The system considered to obtain the estimates is singular, time varying with correlated noises and all parameter matrices of the underlying linear model are subject to uncertainties. The parametric uncertainty is assumed to be norm bounded. The properties of stability and convergence of the Kalman filter for nominal and uncertain system models are proved, where we show that steady state filter is stable and the Riccati recursion associated with this is a nondecreasing monotone sequence with upper bound. (AU)