Advanced search
Start date
Betweenand


Theoretical and experimental analysis of cold-formed steel members under compression

Full text
Author(s):
Gustavo Monteiro de Barros Chodraui
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Maximiliano Malite; Eduardo de Miranda Batista; Humberto Breves Coda; Julio Fruchtengarten; Benjamin William Schafer
Advisor: Maximiliano Malite
Abstract

Cold-formed steel members present, in general, higher local slenderness than classical hot- rolled ones, which make them more prone to local buckling. Besides, thin-walled open sections have small torsional stiffness, and hence global torsional and flexural-torsional instability modes are many times more critical than global flexural ones. Also, distortional mode can happen in sections with lips (edge stiffener). Concerning on global buckling for members under compression, curves used in cold-formed steel design are based on hot-rolled and welded members. For example, the SSRC (Structural Stability Research Council) buckling curve, adopted by NAS (North American Specification), and Eurocode buckling curves, adopted by brazilian codes. Although some papers indicate these curves are acceptable for cold-formed steel members, others claim for a deeper analysis on their unique structural behavior, specially on residual stress, geometric imperfections and coupled buckling modes. It is presented in this thesis an experimental analysis of sections usually used in Brazil (simple and lipped channels, and also single and built-up angles). Moreover, it is developed a strategy for numerical non-linear analysis, considering the effects of global and local (also distortional) geometric imperfections and residual stress as well, in order to obtain a trustable theoretical value for the axial member stength. Results show the viability of the current buckling curves for cold-formed steel members. Finally, direct strength method (DSM) was analysed for all studied members, showing good results. Special attention to angle’s elastic stability, focusing on the coincidence between local-plate and global-torsional mode, which still causes confusion in design methods. Also, due to the fact angles are not pre- qualified sections for using DSM, many options on its application were studied, where it was concluded that negleting torsion in global analysis leeds to unconservative results (AU)