Advanced search
Start date
Betweenand


Agricultural mobile robot (MAR): an architecture based on hierarchical and fuzzy behaviors for autonomous systems of guidance and navigation

Full text
Author(s):
Rafael Vieira de Sousa
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Arthur José Vieira Porto; Carlos Eduardo Cugnasca; Ricardo Yassushi Inamasu; Jun Okamoto Junior; Mario Luiz Tronco
Advisor: Arthur José Vieira Porto
Abstract

Positive advances on AVV (Agricultural Autonomous Vehicle) and MAR (Mobile Agricultural Robot) research are noticed in recent years. However, a limited number of works have proposed reliable systems based on a robotic architectures that are able to perform multiple and independent operations, as well as to self-adapt under changing environmental conditions in the field. In other hand, in other research areas a considerable number of behavior-based architectures have been proposed for mobile robot for autonomous guidance and navigation in unstructured and/or in unexplored environments. At this work, a robotic behavior-based architecture is developed for guidance and navigation of AAV and MAR. Fuzzy rules are used to compose and coordinate the primitive and the complex behaviors. The development includes: the implementation and the simulation of the proposed architecture on a mini-robot; the evaluation and characterization of sensors for the perceptive module of the architecture; and the application of an analysis method based on a mathematical model to assist the composition of a digital communication networks based on the CAN protocol for robot control systems. Experiments have been performed to evaluate the implemented behaviors and to evaluate the operation ability of the robotic platform on a simulated agricultural environment. The results show the feasibility of the proposed approach. The modularity of the architecture by using decentralized fuzzy controllers simplifies the implementation of the robotic architecture. The fuzzy arbitration process is an easy and a feasible method to implement the behavior coordination and to compose complex behaviors. The sensors evaluation and characterization, in particular of an ultrasonic sensor, have allowed establishing operational conditions for using them in AAV or in a MAR. The application of the network mathematical model has allowed the performance analysis of the CAN-based networks under differentiated equipment and configuration parameters for applications in a MAR. (AU)