Advanced search
Start date
Betweenand


Behavior of deep bed rapid filters treating public water supplies through the use of polymers as filter aids.

Full text
Author(s):
Sergio Brasil Abreu
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Defense date:
Examining board members:
Sidney Seckler Ferreira Filho; Cristina Celia Silveira Brandão; José Carlos Mierzwa; Edson Aparecido Abdul Nour; Marco Antonio Penalva Reali
Advisor: Sidney Seckler Ferreira Filho
Abstract

The project was to evaluate the use of anionic and cationic polymers of different molecular weights as filter aids to treat drinking water treatment of surface water sources with high degree of eutrophication, particularly with regard to particulate matter removal optimization and head loss rate minimization. The experimental apparatus was composed of four pilot scale, deep bed, down flow rapid gravity filters, operated in parallel. The filter columns were 5 m high, had inner diameter of 150 mm. The experimental procedure was divided in three stages, conduction of media fluidization and media expansion tests and cationic and anionic polymers application as filter aid. The first stage aims was to define design parameters for the filter backwashing system with water and air and in the two next phases the tests were conducted at a filtration rate of 500 m³/m²/day, with the use of polymers with three different dosages. The polymers tested were CA- 2577, CA-2581, CD-2592 and N1986. They have different structure and molecular weights, thus making wider the array of possibilities tested. The average values of turbidity, for the first stage of testing filtration, were 2.36 ± 0.28 and 1.12 ± 0.21 NTU for raw and settled water, respectively, 0.26 ± 0.07 NTU to the filter F1 with anthracite, 0.25 ± 0.08 NTU for the filter F3 with anthracite and addition of polymer, 0.29 ± 0.08 NTU for the filter F2 with sand and 0.26 ± 0.08 NTU for the filter F4 with sand and the addition of polymer. For the second stage of testing of the filter values of turbidity were 2.03 ± 0.36 NTU for raw water, 0.80 ± 0.21 NTU for settled water, 0.09 ± 0.03 for the filter F1, without the addition of polymer, and 0.15 ± 0.04, 0.16 ± 0.03 and 0.10 ± 0.04 NTU for filters F2, F3 and F4, respectively, all with the addition of polymer. The experimental results led us to conclusion that the adoption of anthracite as single media in deep bed filtration presents the advantage of a lower ascent backwash water velocity for any given bed expansion as compared to deep bed filtration through sand with the same granulometric characteristic. Application of cationic and anionic polymers as filter aids did not lead to any significant improvement in the behavior of pilot scale filters, regardless of applied polymer dosage. Any eventual improvement or worsening was not significant and was closely related to the settled water quality. Regarding the head loss, the filters with anthracite had longer filtration careers when compared to sand, regardless the use of polymers. (AU)