Advanced search
Start date
Betweenand


Thyroid hormone induces vascular relaxation via angiotensin II type 2 receptor (AT2)

Full text
Author(s):
Maria Alicia Carrillo Sepulveda
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Biomédicas (ICB/SDI)
Defense date:
Examining board members:
Maria Luiza Morais Barreto de Chaves; Hernandes Faustino de Carvalho; Maria Helena Catelli de Carvalho; Francisco Rafael Martins Laurindo; Luciana Venturini Rossoni
Advisor: Maria Luiza Morais Barreto de Chaves
Abstract

3,3\',5-triiodo-l-thyronine (T3) has been shown to induce vasodilation by its direct effect on vascular smooth muscle cells (VSMC). However, the mechanism by which T3 causes VSMC relaxation is still unknown. Here, we have shown that T3 causes rapid relaxation of VSMC via increased NO production from inducible and neuronal nitric oxide synthase (NOS). We further showed that these effects were mediated by PI3K/Akt signaling pathway. Vascular reactivity studies showed that endothelium-denuded aortas treated with T3 had a decreased response to phenylephrine which was reserved by L-NAME, NOS inhibitors. Aortas from hyperthyroid rats showed an upregulation of AT2 accompanied by decreased of contractile proteins. In vitro we observed that T3 decreases contractile proteins via AT2. Furthermore, endothelium-denuded aortas from hyperthyroid rats showed a decreased response to angiotensinII and augmented relaxation to sodium nitroprusside (SNP) via AT2 participation. Our data also suggests that PI3K/Akt signaling pathway is involved in T3-induced NO production in VSMC via AT2. (AU)