Advanced search
Start date
Betweenand


Delocalization and superfluidity in Bose- Einstein condensates of atomic gases.

Full text
Author(s):
Fernanda Raquel Pinheiro
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Física (IF/SBI)
Defense date:
Examining board members:
Antonio Fernando Ribeiro de Toledo Piza; Maria Carolina Nemes; Emerson Jose Veloso de Passos
Advisor: Antonio Fernando Ribeiro de Toledo Piza
Abstract

In this work we study the properties of Bose-Einstein condensation and superfluidity in a finite bosonic system in a 1-dimensional ring with a periodic potential under rotation. The usual field effective Hamiltonian is implemented in a representation constructed in terms of the first band Bloch functions and the problem is solved by numeric diagonalization. In the limit of small hopping, this model is essentially equivalent to the quasi-momentum representation of the usual Bose-Hubbard model but incorporates additional effects via Bloch single particle energies and two-body matrix elements in the case of large hopping [19]. By including rotation in the system we force the single particle energies to be a function of the angular velocity. This implies a corresponding angular velocity dependence of the single particle wavefunctions and many-body diagonalization results. In order to study superfluidity, we consider the two fluid criterion. Numerical results for the superfluid fraction involving the change of in rinsic ground state energy with the square of the angular velocity are obtained. We also consider a perturbative expression for the system inertial parameter expressed in terms of the excitation spectrum of the non rotating system, which enables us to relate the energies in the rotating system to the ones in the system without rotation. This is particularly interesting for obtaining superfluid fraction in terms of spectral information of the non rotating system. Similar results can be found by using the definition of superfluid fraction based on the response of the system to a phase variation imposed by means of twisted boundary conditions [30, 33], but with the difference that our developments do not assume the hypothesis of a condensate mode. Our numerical results indicate that in this system condensate and superfluid fractions are quite unrelated in terms of parameter values, indicating that even for dilute gases the concept that superfluidity is a consequence of Bose-Einstein condensation should be considered more carefully. (AU)