Advanced search
Start date
Betweenand


Determination of some parameters of Chiral Perturbation Theory

Full text
Author(s):
Gabriel Rocha de Santana Zarnauskas
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Física (IF/SBI)
Defense date:
Examining board members:
Manoel Roberto Robilotta; Airton Deppman; Bruto Max Pimentel Escobar; Marcelo Otavio Caminha Gomes; Tereza Cristina da Rocha Mendes
Advisor: Manoel Roberto Robilotta
Abstract

At present, chiral perturbation theory (ChPT) is considered the effective theory of quantum chromodynamics (QCD) at low energies. It was established in its modern version by the papers of Gasser and Leutwyler written in the first half of the 80s. For the last 25 years, there has been considerable increase in the number of phe- nomena described by ChPT, always following the growing precision of experiments. The two works we present in this Ph.D. thesis are related to ChPT and discuss the determination of some of the parameters that appear in the ChPT lagrangian. As ChPT is an effective theory, such constants can only be fixed by experiments, models or calculations in the lattice. In the first presented work, we discuss the pion decay constant, F, and how it is changed by the inclusion of electromagne- tic interactions. We argue that the uncertainty of the most accepted value of F might be underestimated. We also show that we cannot determine this constant in the presence of electromagnetic interactions because the function from which it is extracted acquires a gauge dependence and the functions properties drastically change. In the other work, we deal with pseudoscalar meson scalar form factor in three flavors. We manage to write the form factors only in terms of constants present in ChPT lagrangian at leading order, F and masses of pseudoscalar mesons, using ChPT results and the model that deals with form factors in coordinate space. We also determine the respective square radii and, comparing these to those calculated using ChPT, we have obtained L4(mu) = -0.26 · 10^-3 and L5(mu) = 0.85 · 10^-3, for mu = 770 MeV. These values are compatible with the main estimates evaluated with ChPT. (AU)