Advanced search
Start date
Betweenand


New processes and configurations for flat panel displays

Full text
Author(s):
Victor Pellegrini Mammana
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Física (IF/SBI)
Defense date:
Examining board members:
Maria Cecilia Barbosa da Silveira Salvadori; Carlos Henrique de Brito Cruz; Frank Patrick Missell; Ivan Cunha Nascimento; Joel Pereira de Souza
Advisor: Maria Cecilia Barbosa da Silveira Salvadori
Abstract

One of the most important challenges to the electronics industry is the production of a flat panel display which fulfills the requirements of high quality image, large area low power and low cost. Field Emission Display (FED) is the technology in best conditions to face these requirements. However, the short lifetime and low reliability of FED prototypes based on metallic emitters are hindering this technology to get into the market. In this work we investigate two different approaches that could represent a solution for these problems: improvement of the vacuum characteristics inside the emission chamber and use of carbon nanotubes as emitters. With respect to the improvement of vacuun in a FED, this work proposes a new type of emitter based on a porous diamond membrane. Theoretical calculations referent to the vacuum properties and referent to electrostatic field enhancement factor are presented. A new model is proposed to determine the superior limit for the eletrostatic field enhancement factor in a porous emitter. With respect to the experimental part of this work, we show that diamond porous membranes indeed emit electrons, according to the original proposition. The emission performance of these membranes is compared to the performance of flat metalic emitters, coated or Dot with diamond-like carbon. Images of emission spots in pores and a study of the long term membrane emission stability are presented. With respect to carbon nanotubes this work presents a. new treatment process, under plasma arc, that resulted in emission improvement. A study all emission stability of nanotubes is also presented, and systematical emission decay is reported for single-wall nanotubes. (AU)