Advanced search
Start date
Betweenand


Numerical Methods for Conservation Laws

Full text
Author(s):
Débora de Jesus Bezerra
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
José Alberto Cuminato; Marcello Augusto Faraco de Medeiros; Luis Felipe Feres Pereira
Advisor: José Alberto Cuminato
Abstract

The aim of this work is the study of robust numerical techniques for approximating the solution of scalar and systems of hyperbolic conservation laws. To achieve this, we studied conservative schemes with special properties, such as, schemes upwind, TVD, Godunov, flux limiters and slope limiters. The solution of a system of conservation laws can present discontinuities, like shocks, rarefaction or contact. Therefore, the development of numerical techniques capable of reproducing such featurs are highly desirable. Furthermore, besides resolving singularities, it is required that the numerical method chooses the correct weak solution, that is, the entropic solution. Godunov, flux limiters and slope limiters are techniques that show the appropriate behaviour when applied to conservation laws. (AU)