Advanced search
Start date
Betweenand


Asymptotic and Structural Stability of Vector Fields

Full text
Author(s):
Benito Frazão Pires
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Carlos Teobaldo Gutierrez Vidalon; Daniel Smania Brandão; Americo Lopez Galvez; Bruno Cesar Azevedo Scardua; Marco Antonio Teixeira
Advisor: Carlos Teobaldo Gutierrez Vidalon
Abstract

The aim of this work is to provide a Partial $C^r$ Closing Lemma for compact surfaces, orientable or non--orientable. To state it, let $X\\in\\mathfrak^r(M)$, $r\\ge 2$, be a $C^r$ vector field on a compact surface $M$ and let $\\Sigma$ be a transverse segment to $X$ passing through a non--trivial recurrent point $p$ of $X$. Let $P:\\Sigma\\to\\Sigma$ be the corresponding first return map. The first result of this work consists in showing that if $P^n$ has the property that for all $n\\ge N$ and $x\\in{m dom}\\,(P^n)$, $\\vert DP^n(x)\\vert<\\lambda$, where $N\\in\\N$ e $0<\\lambda<1$, then there exists a vector field $Y$ arbitrarily close to $X$ in the $C^r$ topology such that $p$ is a periodic point of $Y$. The second result consists in presenting sufficient conditions, upon the Lyapunov exponents of $P$, so that $\\vert DP^n\\vert<\\lambda$ for all $n\\ge N$. In this thesis, we also include a result concerning the asymptotic stability at infinity of planar differentiable vector fields, not necessarily of class $C^1$. (AU)