Advanced search
Start date
Betweenand


Feasibility studies of ultrasonic approaches to evaluate the mechanical properties of viscoelastic medium

Full text
Author(s):
Théo Zeferino Pavan
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Antonio Adilton Oliveira Carneiro; Timothy Jon Hall; Ricardo Leiderman; Joaquim Miguel Maia
Advisor: Antonio Adilton Oliveira Carneiro
Abstract

Changes in the mechanical properties of soft tissues may be related with pathological disorders. Elasticity imaging is a quantitative method of estimating the mechanical properties of the tissue. In general, the aim of this technique is to measure tissue motion caused by external or internal forces and use it to reconstruct the viscoelastic parameters of the medium. The excitation stress used can be (quasi-) static or dynamic. Both elastographic approaches are explored in this thesis work. In the quasi-static approach, the nonlinear elasticity is studied through tissue-mimicking phantom experiments. In the dynamic approach, the dynamic motion provided through acoustic radiation force is evaluated using ultrasonic and magnetic techniques. The development of phantom materials for elasticity imaging is reported. These materials were specifically designed to provide nonlinear stress/strain relationship that can be controlled independently of the small strain shear modulus of the material, and were designed for use in phantoms where heterogeneous configurations (e.g, spherical targets in a uniform background) are employed. The effects of phantom materials nonlinearity over the strain contrast, signal-to-noise ratio and contrast-to-noise ratio of a phantom containing spherical inclusions undergoing large deformations (up to 20%) were investigated.The feasibility of measuring vibration movement, through a mono-channel continuous wave Doppler system, induced by focused confocal beams, is demonstrated. The interference of two ultrasonic beams promotes a dynamic force to the target. The ability to form images of a rigid spherical inhomogeneity embedded in viscoelastic phantom by scanning both ultrasonic transducers (confocal and Doppler) across the confocal transducer focal plane is presented. The dynamic behavior of a rigid magnetic sphere induced by an acoustic radiation force was investigated. The sphere was suspended in water in a simple pendulum configuration. Steady forces of long (few seconds) and short (few milliseconds) durations were used. The movement of the magnetic sphere was tracked using a magnetoresistive sensor. From the new equilibrium position of the sphere in response to the long-duration static radiation force, the amplitude of this force was estimated. To access the water viscosity, the relaxation movement after the acoustic force had stopped was fitted to a harmonic-motion model. The motion of a rigid sphere embedded in gelatin phantom, displaced by acoustic radiation force, was evaluated using the ultrasonic echoes from a pulse-echo system. The theory used to estimate the viscoelastic parameters of the phantom, from the oscillation of the rigid sphere is an extension of the relation used to estimate the water viscosity. (AU)

FAPESP's process: 06/03781-0 - Vibro-elastography: a new acustic modality measurement for viscoelastic properties of biological tissues
Grantee:Theo Zeferino Pavan
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)