Advanced search
Start date
Betweenand


Treatment of tannery wastewaters using electrochemical and photoelectrochemical process

Full text
Author(s):
Carla Regina Costa
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Paulo Olivi; Fritz Cavalcante Huguenin; Yassuko Iamamoto; Artur de Jesus Motheo; Claudio Augusto Oller do Nascimento
Advisor: Paulo Olivi
Abstract

In this work the degradation of tannery wastewaters using electrochemical, photocatalytic and photoelectrochemical processes was studied. Wastewaters collected in an industry and solutions prepared in the laboratory, which simulated real wastewaters, were used in these studies. Effects of the anodic material, current density, presence of sulfate and chloride ions, chloride concentration, and pH on the electrochemical process were evaluated. Different compositions of DSA®-type electrodes, SnO2-Sb2O5 and BDD were employed as anode. The electrochemical oxidation of acid black 210 dye in phosphate buffer solutions was also studied using the BDD electrode. The electrochemical degradation of tannery wastewaters was able to promote the decrease in the concentration of total phenols, TOC, COD, absorbance in the UV-Vis region, and toxicity for Daphnia similis. However, the higher the chloride concentration in the wastewater, the lower the toxicity reduction because of the higher AOX concentration. The presence of Na2SO4 made the oxidation of organic compounds in the wastewater more difficult. In the absence of chloride, the best results were obtained when BDD was used as anode, and these results were not affected by the pH. However, the best results for the electrochemical degradation of acid black 210 dye were reached in alkaline solution containing phosphate ions, which is probably due to the formation of oxidizing species from these ions. The photocatalytic treatment of the tannery wastewater was performed with TiO2 P25 Degussa supported on the photoreactor walls. Two 15 W-lamps, a black light lamp and a germicide lamp, were used to evaluate the effect of the radiation source. The black light lamp did not change the wastewater characteristics, while the results obtained with the germicide lamp in the presence and absence of TiO2 were similar. The photoelectrochemical process was performed using a 125 W high-pressure mercury vapor lamp as radiation source and an electrode of nominal composition Ti/Ru0.30Ti0.70O2 as anode. Effects of sulfate and chloride ions on the efficiency of the photoelectrochemical process were evaluated. The results obtained with the electrochemical process in the presence of chloride were better than those obtained with the photoelectrochemical process in the presence of sulfate. Moreover, the results obtained with the photoelectrochemical process in the presence of chloride were better than those obtained with the electrochemical and photochemical processes applied separately. (AU)