Advanced search
Start date
Betweenand


Budgets of nutrients and evaluation of biogeochemical parameters in a constructed wetland used for sewage treatment

Full text
Author(s):
Sandra Furlan Nogueira
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Centro de Energia Nuclear na Agricultura (CENA/STB)
Defense date:
Examining board members:
Plinio Barbosa de Camargo; José Teixeira Filho; Sâmia Maria Tauk Tornisielo
Advisor: Plinio Barbosa de Camargo
Abstract

It was investigated a constructed wetlands system for the treatment of sewage, placed in the city of Piracicaba, which is serviced by SEMAE (Municipal Service of Water and Sewage). The system, composed of three treatment phases: septic tank; rice beds (soil substratum and flow of vertical sub-superficial effluent) and channel with water hyacinth (flow of superficial horizontal effluent), operated with a load of 414 L.m-2.day-1 of domestic sewage. The aim of this work was to evaluate biogeochemical parameters in order to verify the efficiency of the system to remove pollutants and to present its mass budgets of nutrients. For so much, the following biogeochemical parameters in the effluent were monitored for one hydrological year: temperature, pH, conductivity, dissolved oxygen (DO), particulate material (PM), biochemical demands of oxygen (BOD5), chemical demands of oxygen (COD) and dissolved fractions, particulate fractions and total of carbon (C), nitrogen (N) and phosphorus (P). In the plants and in the soil the accumulations of C, N, and P were monitored. The performance of the system presented the following annual rates of organic load and nutrient removal in the treatment of sewage: 81% for PM, 89% for BOD5, 86% for COD, 76% for TC (total carbon), 70% for DIN+TPN (dissolved inorganic nitrogen plus total particulate nitrogen), and 80% for TP (total phosphorus). The quality of the final effluent, meaning the alterations propitiated by the system in the final concentrations of organic load and of nutrients, the following annual median decrease was found: 60% for PM, 77% for BOD5, 76% for COD, 51% for TC, 45% for DIN+TPN and 60% for TP. In the mass budget of C, the efficiency of the system in removing loads of C was 84%. The septic tank retained 16% and the substratum of the rice beds and channel retained 48% of that total. The difference of 18% found in the mass budget can be attributed mainly to the gaseous losses and the accumulation of C in the substratum, below the 20 cm sampled. In the mass budget of N, the efficiency of the system in removing loads of N was of 75%. The septic tank retained 4%, the substratum of the rice beds and channel retained 25%, and the plants (rice and water hyacinth) exported or immobilized 11% of that total. The difference of 35% found in the mass budget can be attributed to the gaseous losses, to the accumulations of N in sub surface and increments of NOD in the system. In the mass budget of P, the efficiency of the system in removing loads of P was of 86%. The septic tank retained 5%, the substratum of the rice beds and channel retained 54% and the plants exported or immobilized 7% of that total. The difference of 20% found in the mass budget can be attributed to the accumulation of P in the form of refractory organic compositions or sorbed to the substratum. However, even before the results of favorable depuration, it is concluded that the capacity of the system in treating sewage in the long term will become limited by the deficiency in the aeration of both the effluent and the substratum and for the clogging the substratum. (AU)