Advanced search
Start date
Betweenand


Genetic analysis in microfabricated systems

Full text
Author(s):
Gabriela Rodrigues Mendes Duarte
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Química de São Carlos (IQSC/BT)
Defense date:
Examining board members:
Emanuel Carrilho; Fernanda Canduri; José Alberto Fracassi da Silva
Advisor: Emanuel Carrilho
Abstract

Efforts to develop a microfluidic-based total analysis system (µTAS) have been intense in the scientific community. The goal of achieving a device comprising DNA extraction, amplification, and detection in a single device, a true \"lab on a chip,\" is driven by the substantial advantages associated with such a device. This Thesis focus on development of methods for DNA analysis on microdevices, that can be associated with µTAS. Sequentially, the first step was the development of a novel solid-phase extraction technique in which DNA is bound and eluted from magnetic silica beads in a manner that efficiency is dependent on the magnetic manipulation of the beads and not on the flow of solution through a packed bed. The utility of this technique in the isolation of reasonably pure, PCR-amplifiable DNA from complex samples is shown by isolating DNA from whole human blood, and subsequently amplifying a fragment of the β-globin gene. The technique described here is rapid, simple, and efficient, allowing for recovery of more than 60% of DNA from 600 nL of blood at a concentration which is suitable for PCR amplification. The second step was the use of polyester-toner (PT) microchips for DNA analysis (extraction, PCR and separation). The laser-printing of toner onto polyester films has been shown to be effective for generating PT microfluidic devices with channel depths on the order of 12 µm. We describe a novel and innovative process that allows for the production of multilayer PT microdevices with substantially larger channel depths. Utilizing a CO2 laser to create the microchannel in polyester sheets containing a uniform layer of printed toner, multilayer devices can easily be constructed by sandwiching the channel layer between uncoated cover sheets of polyester containing precut access holes. The process allows for the fabrication of channels several hundred microns in depth, with ~270 µm deep microchannels utilized here to demonstrate the effectiveness of multilayer PT microchips for dynamic solid phase extraction (dSPE) and PCR amplification. Dynamic SPE adapted for PT microchip was able to recover more than 65% of DNA from 600 nL of blood and the DNA was compatible with downstream microchip-based PCR amplification. The compatibility of PT microchips was demonstrated by successful amplification of a 520 bp fragment of λ-phage DNA. The ability to handle the diverse chemistries associated with DNA purtification and extraction is a testimony to potential utility of PT microchips beyond separations, and presents a promising new platform for genetic analysis that is low cost and easy to fabricate. Two integrations were carrying out on PT microchip, dSPE - PCR and PCR-ME. The first integration was made in a single chamber and the amplification of 520 bp fragment of λ-phage was demonstrated. The second integration describes a process that allows the production of a multidomain microchip with different channel depths for the different domains for genetic analysis. The final device was made by the conventional sandwiching of the four polyester films of the PCR domain with the two polyester films for the electrophoresis domain. The successful valveless integration of PCR and separation was demonstrated by amplification and detection of a 520 bp fragment of λ-phage DNA. This work shows the enormous potential of PT microchips to be used for total genetic analysis. (AU)