Advanced search
Start date
Betweenand


Study of the photophysics process in organic heterostructures which utilize light switch by molecular alignment.

Full text
Author(s):
Higor Rogerio Favarim
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Francisco Eduardo Gontijo Guimaraes; Gerson Luiz Mantovani; Alexandre Marletta
Advisor: Francisco Eduardo Gontijo Guimaraes
Abstract

The subject of this work is the study of the photophysics process in poly (p-phenylene vinylene) self-assembled films (PPV), with were synthesized and processed at the Grupo de Polímeros Prof. Bernhard Gross (GPBG) of the IF8C, by the energy transfer process (TEE) for, the azochromophore Brilliant Yellow (BY) or inside the PPV polymeric chain by an energetic gradient. We are interesting in the energetic relaxation pathway meaning, during the spectral diffusion, were the decay acts, radioactive and non-radioactive. By using a specific molecular engineering, propitiated by the self¬assembly method, heterostructures were done to study the energy transfer (TEE) to azochromophores, separated by an inert spacer. The novelty is on the ability of sort the BY states by changes on the pH solution, during the film fabrication process. With such system, we could prove that intermediary states, during spectral diffusion, played an important role for the TEE, and should been transfer to adjacent blocks. This result, with the new methodology adopted for the PTHT to PPV conversion, a long chain ion dodecylbenzenesulfonate (DBS), was enough to develop new structures for the TEE, build by a HOMO and LUMO energetic gradient states in conjugated polymers. These results verify the TEE in the initiate states of the spectral diffusion concomitance with the TEE for a specific film\'s region, implicating in a new methodology for an efficiency increase in organic luminescent devices. (AU)