Advanced search
Start date
Betweenand


Structural and functional studies of dihydroorotate dehydrogenase

Full text
Author(s):
Sheila Gonçalves do Couto Carvalho
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Antônio José da Costa Filho; Ana Paula Ulian de Araujo; Pietro Ciancaglini; Ladislau Martin Neto; Joao Ruggiero Neto
Advisor: Antônio José da Costa Filho; Maria Cristina Nonato Costa
Abstract

Dihydroorotate dehydrogenases (DHODHs) are flavin-containing enzymes which catalyse the conversion of (S)-dihydroorotate to orotate, in the fourth step of the de novo biosynthesis of pyrimidine nucleotides. In rapidly proliferating mammalian cells, pyrimidine salvage pathway is insufficient to overcome deficiencies for nucleotide synthesis. Moreover certain parasites lack salvage enzymes, relying solely on the de novo pathway to produce nucleotides. Thus, DHODH has turned out an excellent target to the development of inhibitors that block nucleotide biosynthesis. E. coli DHODH (EcDHODH) and X. fastidiosa DHODH (XfDHODH) are class 2 DHODHs found associated to cytosolic membranes through an N-terminal extension, whereas T. cruzi DHODH (TcDHODH) is a class 1 DHODH localizated in the cytoplasm. In the present work, we used a combination of molecular biology and biochemical methodologies with spectroscopic techniques to obtain structural and functional information on DHODH. On one hand, Electronic Paramagnetic Resonance (EPR) associated with Site-directed Spin Labeling (SDSL) and spectral simulation were employed to study the interaction of EcDHODH with vesicles. Changes in vesicle dynamic structure induced by the enzyme were monitored via spin labels located at different positions along the phospholipid acyl chain and via spin labels located at enzyme specific positions. On the other hand, DNA techniques and site-directed mutagenesis were used to produce mutants of EcDHODH where a nitroxide spin probe was selectively attached to some residues located at the protein N-terminal extension for subsequent EPR-SDSL experiments. These are the first site-directed spin labeling experiments performed in Brazil and the spectra allowed us to monitor dynamics experienced by those residues at the EcDHODH N-terminal domain. Furthermore, molecular biology and biochemical assays were employed with the objective of expressing and purifying XfDHODH and Circular Dichroism (CD) was utilized to probe the structural stability of TcDHODH in the presence of its natural inhibitor (orotate). (AU)