Advanced search
Start date
Betweenand


Structure determination of proteins by NMR: application to a His15Ala mutant of HPr from staphylococcus aureus.

Full text
Author(s):
Claudia Elisabeth Munte
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Richard Charles Garratt; Fabio Ceneviva Lacerda de Almeida; Luiz Alberto Colnago; Glaucius Oliva; Otavio Henrique Thiemann
Advisor: Richard Charles Garratt
Abstract

High resolution Nuclear Magnetic Resonance spectroscopy has been used for structural studies on two biological macromolecules; the HPr protein from the bacterium Staphylococcus aureus, and the Cpeptide from human proinsulin. Both are related to the regulation of glucose absorption by celIs, the former case in prokaryotes and the latter in higher organisms. The HPr protein (Histidine Containing Protein) from S. aureus is one of the central components of the PTS (Phosphoenolpyruvate;sugar-phosphotransferase) system responsible for the active transport of sugars into the bacterial celI. During this process, His15 of the HPr active site is phosphorylated by enzyme I (EI), and then subsequently transfers this phosphate onto enzyme lIA (EIIA). The His15&#8594Ala mutant of HPr, whilst unable to participate in phosphate transfer, nevertheless retains similar affinities for both EI and EIIA. Using two-dimensional (COSY, TOCSY, NOESY, HSQC) and three-dimensional (HNCA, HNCO, NOESY-HSQC) NMR techniques, the structure of the His15Ala mutant of the HPr protein from S. aureus was determined. Its structure consists of an open &#946-sandwich, composed of three &#945-helices packed against a four-stranded anti-parallel &#946-sheet. This pattern has been seen in all other HPr proteins from other species so far determined but is markedly different from the previously published native structure from S. aureus with respect to the relative orientations of some of the elements of secondary structure. A detailed comparison of the native and mutant structures revealed differences in the conformation of the active site loop. The latter assumes a conformation similar to that seen in the structure of the complex between E. coli HPr and EI. This may explain the normal affinities of the mutant protein for EI and EIIA despite the absence of the active site histidine. The C-peptide of proinsulin is important for the biosynthesis of insulin but has been considered for a long time to be biologically inert. Recent studies in diabetic patients have stimulated a new debate concerning its possible regulatory role. Structural studies of the C-peptide were performed using two dimensional NMR spectroscopy (COSY, TOCSY and NOESY). ln the presence of 50% TFE three central regions of the molecule (residues 9-12, 15-18 and 22-25) showed tendencies to form ~-bends. The N terminal region (residues 2 to 5) was present in the form of either a type I or I\' &#946-turn, whilst the C terminal region (26-31) presented the most welI-defrnedstructure of the whole molecule which included a type III\' &#946-turn. The C-terminal pentapeptide (EGSLQ) has been described in the literature as being responsible for chiral interactions with an as yet uncharacterized receptor. Previous NMR studies have predicted the existence of a well-defined structure at the C-terminus of the C-peptide, kwown as the CAknuckle. We propose that the structure described here for the C-terminal pentapeptide is the CA-knuckle and represents the active site of the C-peptide of human proinsulin. (AU)