Advanced search
Start date
Betweenand


Immune responses and anti-tumor therapeutic effects generated by a DNA vaccine against HPV-16-induced tumors.

Full text
Author(s):
Mariana de Oliveira Diniz
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Biomédicas (ICB/SDI)
Defense date:
Examining board members:
Luis Carlos de Souza Ferreira; Silvia Beatriz Boscardin; Eliane Namie Miyaji; Daniela Santoro Rosa; Maria Notomi Sato
Advisor: Luis Carlos de Souza Ferreira
Abstract

The development of immunotherapeutic strategies against human papillomavirus (HPV) is a priority for the control of HPV-induced lesions and cervical cancer. In this study, we developed DNA vaccines encoding HPV-16 proteins fused to glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1) as an approach to control HPV-16 induced tumors. The vaccine encoding HPV-16 E7 fused to HSV-1 gD (pgDE7), when administered in a four doses vaccine regimen, was able to generate significant activation of E7-specific CD8+ T cells and showed 40% of therapeutic anti-tumor effect in mice previously challenged with tumor cells expressing HPV-16 E6 and E7 proteins (TC-1 cells). Following these evidences, we developed a new vaccine vector encoding HPV-16 E7, E6, E5 proteins fused to HSV-1 gD (pgD-E7E6E5). Only one vaccine dose generated antigen-specific CD8+ T cell responses and three doses conferred 70% protection to mice previously challenged with TC-1 cells. As an attempt to enhance the observed therapeutic anti-tumor effects, we tested two approaches: co-administration of cytokine-expressing plasmids and codon optimization of the gene encoding the chimeric protein. The combination of the vaccines pgDE7 or pgD-E7E6E5 with plasmids encoding the cytokines IL-2, IL-12 or GM-CSF increased the therapeutic protection to 100% of the vaccinated animals following a single dose. The gene sequence adaptation increased by a factor of 5 the therapeutic potential of the pgDE7 vaccine. In summary, the data presented in this thesis demonstrated the development of a vaccine strategy against HPV-16 induced tumors and reinforces its potential use in future clinical trials. (AU)