Advanced search
Start date
Betweenand


Contributions to science and engineering of cementitious materials: processing, durability and mechanical strenght

Full text
Author(s):
Hebert Luís Rossetto
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Milton Ferreira de Souza; Adalberto Fazzio; Joao Bento de Hanai; Vitor Carlos Pandolfeli; Romildo Dias Toledo Filho
Advisor: Milton Ferreira de Souza
Abstract

The materials engineering afforded the most paramount known advances on the mechanical performance of cementitious materials in the last decades, through either casting techniques or microstructure design. Therewith, it was demonstrated to be false the idea that low mechanical strengths should be inherent to cement-based materials, but, at the same time, the limited ingress of these new materials to fields of great demands relegated them to the condition of merely alternative. The fact that each ton of Portland cement does create another ton of gases related to global warming indicates that the former situation needs to be reviewed. That is why one of the main contributions of this work was to improve casting techniques to render massive production and excellent mechanical performance, in addition to durability, for the cementitious materials. The concept and the construction of a roll compaction equipment were the first step to the cost-effective production of cementitious plates with compressive strength in excess of 200MPa, in addition to a reproducibility inasmuch as that of a technical ceramic. In the same way, the extrusion, a technique able to largely produce components of complex geometries, was also well adapted to cement-based materials which, again, showed excellent reproducibility and bending strength of more than 20MPa. In both, pressing and extrusion techniques, the control of processing steps was enough to get cement-based products whose mechanical strength barely changes, even after exposure to deleterious environments. Hereby, we attribute the widest concept of durability to a material which depends on the mechanical strength throughout its service life. Anyway, we also developed an innovative method to improve the durability of these materials along this work: TEOS impregnation. TEOS is a molecular precursor of silica which reacts with calcium hydroxide to seal the cementitious pores wherefrom it penetrated. Quantitatively, the porosity of Portland cement-based products dropped down to values around 1% in volume, what is related to concomitant reduction of chlorine ion diffusion coefficient of an order of magnitude. In summary, the results that will be demonstrated in the following chapters are in resonance with the most rigorous rules for sustainability, precisely in a field where such an initiative is welcome to help encouraging its industrialization: the building construction. However, it seems that the biggest virtue of this work is not only the improvements for cementitious materials engineering, but also to apply the science for the understanding of the origin of their mechanical strength. According to our experimental evidences, the mechanical strength of these materials is ruled by water molecules which are confined in nanometric layers between the hydrating phases of Portland cement. These water nanolayers behave themselves as glassy phase and, in their turn, promote adhesion to the surfaces which confine them. To the best of our knowledge, this work is one of the most promising contributions to become possible the nanotechnology of these materials, through a subject up to that time unexplored: the adhesion by confined water. Hence, it is likely that the innovation about this subject could exceed the material itself, once life as we know owes its peculiarities to the intrigant properties of water and to their hydrogen bonding. (AU)