Advanced search
Start date
Betweenand


Self-identification algorithm for the autonomous control of vibrations in rotating systems

Full text
Author(s):
Thiago Malta Buttini
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Rodrigo Nicoletti; Agenor de Toledo Fleury; Adriano Almeida Gonçalves Siqueira
Advisor: Rodrigo Nicoletti
Abstract

Vibrations are intrinsic to rotating machinery and, although they cannot be completely eliminated, it is important to control this kind of motion with the objective of avoiding fatigue and even failure of the machine. In this context, due to their capacity of changing the dynamic characteristics of these machines, active bearings are an effective solution to reduce vibration in rotors, allowing not only longer lifecycle, but also higher performance. Frequently, the design of the control system of these bearings is based on a mathematical model of the plant, whose obtainment can be hard and, due to the adoption of simplifying hypotheses (inherent to the modeling process), it may be imprecise. Keeping in mind these concepts, this dissertation proposes the use of a proportional-derivative control technique based on frequency response measurements (free of mathematical models) applied to the vibration control of rotating systems, overcoming modeling difficulties. This technique is experimentally tested in a test rig whose actuation elements are the electromagnets of an active bearing, and an algorithm for automatic identification of the system\'s FRFs (self-identification algorithm) is developed and implemented, allowing, in an autonomous way, the calculation of the optimum gains of the PD controller aiming at controlling vibrations. Based on the obtained results, this work consists in a preliminary study that may enable the development of a smart active bearing, which, from measurements of the shaft\'s displacement, would be capable of obtaining the frequency response of the system and determine, automatically, the optimum gains of the controller, making it possible the autonomous vibration control in rotating systems, from a self-identification algorithm and a model-free control methodology. (AU)

FAPESP's process: 09/12276-5 - Self identification system for controlling vibration in rotating systems
Grantee:Thiago Malta Buttini
Support Opportunities: Scholarships in Brazil - Master