Advanced search
Start date
Betweenand


Cyanobacteria in mangrove ecosystems: isolation, morphology and genetic diversity

Full text
Author(s):
Diego Bonaldo Genuario
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Centro de Energia Nuclear na Agricultura (CENA/STB)
Defense date:
Examining board members:
Marli de Fatima Fiore; Luis Henrique Zanini Branco; Claudia Barros Monteiro Vitorello
Advisor: Marli de Fatima Fiore
Abstract

Mangroves are transitional ecosystems between terrestrial and marine environments found in tropical and subtropical regions. The broad range of variations of salinity and oxygen content, typical of these environments, is among the main constraint factors for the establishment and development of biota. Nevertheless, mangroves have high primary production. Among the nutrients, nitrogen is one of the most important limiting factors affecting the development of mangrove vegetation and only low availability of reduced forms is present. Therefore, there is a need to determine the nitrogen fixing microorganisms that colonize mangrove ecosystems. Among those, there are the cyanobacteria, a well known group of oxygenic photosynthetic and nitrogen fixing microorganisms. In this study, 50 cyanobacterial strains were isolated from environmental samples of soil, water and periphytic material collected in the Cardoso Island and Bertioga mangrove ecosystems, São Paulo. These strains were isolated using specific growth media and morphological analyses identified representatives of the orders Chroococcales (35 strains, 70%), Oscillatoriales (9 strains, 18%) and Nostocales (6 strains, 12%). Sixteen strains belong to the orders Chroococcales and Nostocales were selected for phylogeny studies using the gene rpoC1. The majority of rpoC1 sequences generated by PCR amplification using the specific set primer rpoC1-1/rpoC1-T showed low similarities (below 90%) with sequences available in the GenBank, indicating that these cyanobacterial strains are unique. The exceptions were only two strains (Synechococcus sp. CENA177 and Cyanothece sp. CENA169) that had high similarities with cyanobacterial sequences isolated from Brazilian freshwater environments. The Neighbor-Joining phylogenetic analysis showed that several of the new mangrove cyanobacterial strains clustered together, with no relationship with the taxonomical description based on morphotypic characterization. A search for the functional nifH gene, which coding for nitrogenase reductase, on 27 mangrove isolates revealed its presence in 21 strains (77%) dispersed among the orders Chroococcales, Oscillatoriales and Nostocales. The 21 amplified fragments of nifH were cloned and sequenced, and all the sequences also showed low similarities (below 95%) with cyanobacterial sequences available in the GenBank. The phylogenetic analysis of nifH gene positioned the new mangrove cyanobacterial strains in several clusters distributed along the tree, and as also observed for rpoC1 gene, with no correlation with the taxonomical description based on morphotypic characterization. Nitrogenase activity, measured by the acetylene reduction technique, was found in five strains belonging to the order Nostocales and one strain belonging to the order Chroococcales. The estimation of biological nitrogen fixation by these strains ranged from 327.01 to 1954.15 pmol N2.g-1 dry biomass.day-1. (AU)

FAPESP's process: 07/06360-8 - Genetic characterization of cyanobacteria isolated from mangrove of São Paulo State based on nifH and cpcBA-IGS nucleotide sequence
Grantee:Diego Bonaldo Genuário
Support Opportunities: Scholarships in Brazil - Master