Advanced search
Start date
Betweenand


Design of multi-phase micromechanisms using the topology optimization method.

Full text
Author(s):
Wagner Shin Nishitani
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Defense date:
Examining board members:
Emílio Carlos Nelli Silva; Marcelo Krajnc Alves; Larissa Driemeier
Advisor: Emílio Carlos Nelli Silva
Abstract

A micromechanism is essentially a device of milimetric, or even micrometric, dimensions that can actuate as a gripper, tweezers, clamp, etc. When coupled to an electronic system, they are called \"Micro-Electro-Mechanical Systems\" (MEMS). Almost all of these devices are constituted by compliant mechanisms, where the motion is allowed by the compliance of its own structure, rather than the presence of joint and pins. One of the forms of micromechanisms actuation is the electrothermomechanical, where an electric actuation applied to the mechanism is converted in heat, by Joule effect, that generates the thermal stress responsible for the desired structural deformation. Recently, many research groups around the world are developing micromechanisms manufactured with two (or even more) materials, what allows larger displacements without exceeding the materials ultimate tensile strength, and gives more flexibility in the design of micromechanisms that accomplish different tasks when under different actuations (multiflexible mechanisms). The manufacturing process techniques of micromechanisms reached a high level of maturity, however, the modelling and, particularly, the development of systematic computational methods for design are still in early stages. Nowadays, micromechanism design with many materials is being carried on by \"try and error\" methods, depending on designer intuition and experience. Also, a generic design of an electrothermomechanical MEMS is a complex task that needs multidisciplinary knowledge. Thus, the objective of this work is to develop a software for the design of multi-phase MEMS, electrothermomechanically actuated, using a method for systematic and generic design, such as Topology Optimization Method (TOM). Using a peak function material interpolation model, any number of materials can be considered without increasing the amount of design variables if compared to an optimization with only one material and void. Mechanisms actuated by electric tension were designed considering the maximization of output displacement against a work piece with known stiffness. The design of microactuators considering multiflexibility was also performed. A study of optimization parameters influence is presented. As an alternative to electrothermomechanical actuation, some mechanisms actuated by heat flow were designed. (AU)