Advanced search
Start date
Betweenand


Estimate of the photosensitizing activities of the methylene blue, chloroaluminum phthalocyanine and nitrosyl ruthenium complex in the fungus Cryptococcus neoformans.

Full text
Author(s):
Gabriela Braga Rodrigues
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Gilberto Ubida Leite Braga; Roberto Martinez; Antonio Claudio Tedesco
Advisor: Gilberto Ubida Leite Braga
Abstract

The basidiomycete Cryptococcus neoformans is a saprophytic worldwide fungus which is normally isolated from soils contaminated with pigeon excreta and plant detritus. Despite a saprophytic existence, the fungus can infect and cause disease in a wide variety of animal hosts such as mammals, birds and insects. Serious infections caused by C. neoformans and by other genera of fungi have emerged all over the world, primarily due to the increased numbers of immunocompromised individuals. Additionally, the emergence of new species and antimycotic-resistant strains of pathogenic fungi makes the development of new fungus-control techniques highly desirable. Photodynamic inactivation of fungi is a new and promising method that can be used to control localized mycoses or kill fungi in the environment. The photodynamic inactivation of fungi is based on the use of a photosensitizer that accumulates in, or preferentially is metabolized by, cells of the target microorganism. The photosensitizer is then exposed to visible light in the presence of oxygen, and this starts photochemical processes that produce a series of reactive oxygen species (ROS) capable of killing the fungal cells without causing significant damage to host tissues. We report here the efficacy of methylene blue (MB) (in solution and in nanoemulsion), chloroaluminum phthalocyanine (in nanoemulsion) and nitrosyl ruthenium complex (in solution) as photosensitizers in photoinactivation of melanized and nonmelanized Cryptococcus neoformans yeast cells. C. neoformans were susceptible to photoinactivation by chloroaluminum phthalocyanine with inactivation close to 100% when the appropriate combination of photosensitizer concentration and light-exposure dose was used. Photoinactivation by MB was only partial and nitrosyl ruthenium complex was ineffective. In the dark, neither photosensitizers inactivated the fungus. Complementary experiments were performed to estimate the effect of the age of the cells and of melanization in the fungus tolerance to photoinactivation by MB. There was a significative difference in the tolerance among strains of C. neoformans. For most of the treatments (strains and time of growth) there was no difference between the tolerance of melanized and nonmelanized cells. There was no difference in the tolerance among 4 to 8-day cells either. (AU)