Advanced search
Start date
Betweenand


Lychnophora ericoides Mart: pharmacological evaluation and considerations on the oxidative metabolism from its bioactive compounds

Full text
Author(s):
Michel David dos Santos
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Norberto Peporine Lopes; Lusiane Maria Bendhack; Pierina Sueli Bonato; Leticia Veras Costa Lotufo; Dulce Helena Siqueira Silva
Advisor: Norberto Peporine Lopes
Abstract

The scientific study of medicinal plants is a multidisciplinary task and involves many fields of knowledge such as physics, chemistry and biology. In this context, pharmacological and toxicological studies play an important role since they allow evaluating parameters such as safety and efficacy. These parameters have to be well established, being essential for the patient?s safety and mandatory for the regulatory agencies. Lychnophora ericoides (arnica da serra), an endemic plant from Brazil, is widely used in traditional medicine to treat pain and inflammation. On the other hand, the species still lacks solid information on its safety and therapeutic properties. Therefore, the goals of this study are: to perform in vivo pharmacological assays (acetic acid-induced writhing test in mice, formalin pain in rats, carrageenan-induced rat paw edema, LPS-induced fever in rats) with polar fractions from L. ericoides and also chlorogenic acid (CGA, 5-caffeoylquinic acid); to evaluate the effect of secondary metabolites from L. ericoides on the synthesis of inflammatory mediators produced by in vitro cultured U-937 cells; to study the oxidative metabolism of the metabolites aforementioned catalyzed by synthetic metalloporphyrin (cytochrome P450 biomimetic system) and also by rat liver mitochondria. The results obtained in the pharmacological assays show that the analgesic and anti-inflammatory activities are distributed in distinct parts of the plant. Whereas the roots are predominantly analgesic, the leaves are both analgesic and anti-inflammatory. Also, CGA present both analgesic and anti-inflammatory activities but no antipyretic activity. When it comes to the effect of the secondary metabolites on the production of inflammatory mediators, vicenin-2 (VIC-2) is able to significantly inhibit PGE2 in a dose-dependent fashion. The effect exerted by VIC-2 on PGE2 is due neither to its inhibition on the synthesis of cycloxigenase-2 nor on the direct inhibition of the catalytic activity of the enzyme. Lower concentrations of 3,5-dicaffeoylquinic and 4,5-dicaffeoylquinic acids present a slight inhibitory effect on PGE2 synthesis; however, increasing doses stimulate the production of the mediator. In addition, the dicaffeoylquinic acids and the 3,4,5-tricaffeoylquinic acid are able to significantly inhibit the production of the chemokine monocyte chemoattractant protein-3 (MCP-3), involved in the migration of immune cells to the inflammatory site. CGA is able to inhibit some of the evaluated cytokines, such as tumor necrosis factor alpha, interleukin-6 and MCP-3. On the other hand, the major oxidized metabolite from CGA (OX-CGA) obtained from the metalloporphyrin biomimetic reactions is inactive or weakly active on the production of such cytokines. The results obtained in the metalloporphyrin-catalyzed oxidation reactions of CGA show the formation of 3 metabolites: hydroxylated, dicarbonylated and carbonylated (OX-CGA), the last being the major compound obtained in this biomimetic system. The same oxidation pattern is observed in the biomimetic oxidation of the dicaffeoylquinic acids. Finally, the single CGA oxidized metabolite produced by rat liver mitochondria corresponds to the carbonylated metabolite OX-CGA obtained in the metalloporphyrin reactions. (AU)