Advanced search
Start date

Identification of polymorphisms in the chicken chromosome 2 region associated with muscle deposition

Full text
Thaís Fernanda Godoy
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Luiz Lehmann Coutinho; Clarissa Boschiero; Mônica Corrêa Ledur
Advisor: Luiz Lehmann Coutinho

The Brazilian chicken meat production has a great economic importance in worldwide mainly due to advances in breeding. The emergence of new techniques of sequencing (nextgeneration sequencing) becomes a powerful tool because through identification of SNPs (single nucleotide polymorphism) and INDELs (deletions/insertions) allows the addition of new information for genetic improvement. The muscle deposition, particularly the breast muscle, is one of the features that are most noteworthy because of its nutritional and economic importance. Therefore the aim of this study was to perform the genome resequencing of 18 chicken from two distinct experimental lines and identify SNPs and INDELs in a QTL region on chromosome 2 previously associated with breast muscle, and characterize the variants to identify potentially function ones and propose candidate mutations for future studies. To achieve these objectives, eighteen chickens of two different experimental lines (broiler and layer), both developed by Embrapa Swine and Poultry were sequenced by Illumina next-generation platform. SNPs and INDELs were identified by bioinformatic tools in a QTL region on chicken chromosome 2 (105,848,755-112,648,761 bp) which was previously associated with breast muscle deposition. Sequencing of the eighteen animals generated around 2.7 billion of reads, and 77% of the reads were retained after filtering. The reads were aligned against the chicken genome reference (Gallus_gallus-4.0, NCBI) by Bowtie2 tool resulting in a 10.6X coverage across the target region. Using SAMtools, 722,832 SNPs and 63,727 INDELs were identified in the all individuals, and after a stringent filtration, 77% of SNPs (n=558,767) and 60% of INDELs (n=38,402) were maintained. Based on unique variants for all the animal (85,765 SNPs and 7,828 INDELs) were performed the functional annotation by ANNOVAR tool. Among the non-synonymous SNPs (n=153) and stopgain (n=3), fifteen were predicted like a deleterious mutation. One of deleterious SNPs has already deposited in public database, and it was identified in RB1CC1 gene, which function is related to breast muscle development. Using the DAVID tool was possible to analyze the 37 genes related to the non-synonymous SNPs, stopgain, frameshift and non-frameshift INDELs. Among these genes, three (DTNA, RB1CC1 and C-MOS) were selected due their functions related to muscle development and their mutations were analyzed. Therefore, further association studies can be performed with these candidate genes and their mutations, and also validation in commercial populations, allowing a better explanation of QTL effects. (AU)

Grantee:Thaís Fernanda Godoy
Support Opportunities: Scholarships in Brazil - Master