Advanced search
Start date
Betweenand


Serum-free suspension adaptation of human cell lines

Full text
Author(s):
Rafael Tagé Biaggio
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Kamilla Swiech Antonietto; Elisabeth de Fatima Pires Augusto; Luis Alexandre Pedro de Freitas
Advisor: Kamilla Swiech Antonietto
Abstract

Human cell lines have attracted great interest since they are capable of producing glycosylated proteins in a more similar way to native human proteins, reducing the potential for immune responses against non-human epitopes. However, these human cell lines have not been extensively characterized and cultured in large scale and in serum-free suspension conditions. As a result, the main objective of this work was to adapt three human cell lines: SK-Hep-1, HepG2 and HKB-11 to serum-free suspension cultures, since they are promising systems of recombinant protein expression. For this task, four commercial serum-free media were tested. Adapted cell lines in T-flasks were further adapted to suspension cultures. Results showed that both HKB-11 and SK-Hep-1 were adapted to serum-free suspension cultures in FreeStyle and SFMII, respectively and were cryopreservated in serum-free formulations. Kinetic characterization showed that HKB-11 cell concentration was four times higher than SK-Hep-1 cell (8,6x106 and 1,9x106 cells/ml, respectively) and showed cell growth in culture over 18 days. The maximum specific growth rate (?max) was similar for both cell lines (0,0159 h-1 to HKB-11 and 0,0186h-1 to SK-Hep-1). Growth limitation of adapted human cell lines does not seem to be associated with depletion of glucose and glutamine, nor with the formation of lactate in inhibitory concentrations. However, in both cases, ammonia production achieved inhibitory concentrations (2 - 5 mM). In general, it was possible to establish human cell cultures that are compatible with reproducible and safe bioprocess conditions and in compliance with good manufacturing practices. (AU)

FAPESP's process: 12/02109-7 - SERUM-FREE SUSPENSION ADAPTATION OF HUMAN CELL LINES
Grantee:Rafael Tagé Biaggio
Support Opportunities: Scholarships in Brazil - Master