Advanced search
Start date
Betweenand


Blockade of cell coupling after mechanical trauma in the retina alters scattering of apoptosis.

Full text
Author(s):
Vera Paschon
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Biomédicas (ICB/SDI)
Defense date:
Examining board members:
Alexandre Hiroaki Kihara; Daniel Carneiro Carrettiero; Marcela Bermudez Echeverry; Jean Christophe Houzel; Andréa da Silva Torrão
Advisor: Alexandre Hiroaki Kihara
Abstract

The neuroprotection stands out as one of the most pursued hot topics in applied neurosciences. The gap junctions (GJ), formed by connexin (Cx) are involved in neurodegeneration injury. Studies using KO animal models endowed apparently contradictory results in relation to the role of coupling in neuroprotection. The aim of this study was to analyze the role of Cx-mediated communication in focal lesion induced by mechanical trauma in the retina, a model that alow the visualization of the focus, penumbra and adjacent areas. We observed distinct regulation of Cx36 and Cx43 during neurodegeneration. The Cx36 did not change during the lesion progression and Cx43 showed disorganized pattern and upregulated after 7 days, the same as GFAP. Apoptotic amacrine cells are coupled with health neighborhood cells by Cx36. The functional role of GJ was evaluated using blockers to verify the viability/cell death. Carbenoxolone (CBX) reduced the spread of apoptosis after 4h while quinine had the same effect after 1h. The distribution of apoptotic nuclei confirmed that the use of GJ blockers reduced the propagation of apoptosis. Quinine, but not CBX, decreases initial and effector caspases expression. The control of GJ channels permeability can participate in neuroprotection strategies. (AU)