Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Cellular/dendritic arrays and intermetallic phases affecting corrosion and mechanical resistances of an Al-Mg-Si alloy

Full text
Brito, Crystopher [1] ; Vida, Talita [1] ; Freitas, Emmanuelle [1] ; Cheung, Noe [1] ; Spinelli, Jose Eduardo [2] ; Garcia, Amauri [1]
Total Authors: 6
[1] Univ Campinas UNICAMP, Dept Mfg & Mat Engn, BR-13083860 Campinas, SP - Brazil
[2] Fed Univ Sao Carlos UFSCar, Dept Mat Engn, BR-13565905 Sao Carlos, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Source: Journal of Alloys and Compounds; v. 673, p. 220-230, JUL 15 2016.
Web of Science Citations: 24

Outdoor applications of Al-Mg-Si alloys have been specified due to their very good corrosion resistance when compared with those of other aluminum alloys. Nevertheless, these alloys still have corrosion problems. One of the interests consists in characterizing the microstructure evolution, which is supposed to have important role on the final properties. In many aluminum alloys, the effects of intermetallics on both the corrosion and mechanical behavior is of industrial interest. Particularly concerning Al-Mg-Si alloys, hardly anything is known about the influence of the Mg2Si phase. This work aims to encompass such analyses on an Al-3.0 wt% Mg-1.0 wt% Si alloy directionally solidified under a wide range of cooling rates. Experimental results include primary dendritic and cellular spacings, nature and distribution of intermetallics associated with corrosion potential, pitting potential, current density, ultimate tensile strength and elongation. A high-cooling rate cellular region has been identified, followed by a dendritic region that occurred for cooling rates lower than 0.8 K/s. The cellular spacing varied from about 16 mm to 38 mm whereas the primary dendritic arm spacing varied from 120 mm to 270 mm. The alpha-Al cellular region is shown to be characterized by finely dispersed Mg2Si and Fe-bearing particles, which allowed better mechanical properties (strength and elongation) and better corrosion resistance to be attained. Both mechanical strength and corrosion resistance (for 0.15 M and 0.5 M NaCl electrolytes) is shown to be unaffected by the scale of lambda(1) within the dendritic region. (C) 2016 Elsevier B.V. All rights reserved. (AU)

FAPESP's process: 12/08494-0 - Thermal and Microstructural Parameters in the Transient Solidification of Al-Mg and Al-Mg-Si Alloys and Correlation with Mechanical and Corrosion Resistances
Grantee:Crystopher Cardoso de Brito
Support type: Scholarships in Brazil - Doctorate
FAPESP's process: 13/15478-3 - Interrelation of Solidification Thermal and Microstructural Parameters and Tribocorrosive Behavior of Al-Zn(Mg) e Zn-Mg Alloys
Grantee:Emmanuelle Sá Freitas Feitosa
Support type: Scholarships in Brazil - Post-Doctorate
FAPESP's process: 14/25809-0 - Thermal and microstructural parameters in the transient solidification of Al-Mg and Al-Mg-Si alloys and correlation with mechanical and corrosion resistances
Grantee:Crystopher Cardoso de Brito
Support type: Scholarships abroad - Research Internship - Doctorate
FAPESP's process: 13/23396-7 - Effects of solidification MicrostructureParameters of Aluminum-based multicomponent alloys (Al-Mg-Si; Al-Sn-Cu; Al-Zn-Mg) on the resistances to Corrosionand tribocorrosion degradation
Grantee:Amauri Garcia
Support type: Regular Research Grants
FAPESP's process: 14/50502-5 - Interrelation of thermal and microstructural solidification parameters and corrosion/tribocorrosion behavior of alloys for tribological, biomedical and solder applications
Grantee:Amauri Garcia
Support type: Regular Research Grants