Advanced search
Start date

Dynamics of the sheep (Ovis aries) rumen microbiome and its relationship with the degradation of biomass

Full text
Emiliana Manesco Romagnoli
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Rodrigo Mendes; Tsai Siu Mui
Advisor: Rodrigo Mendes; Adibe Luiz Abdalla

Considering the diet as a modulator of ruminal microbiome, this work aimed to investigate the impact of sugarcane bagasse on the composition and function of microbial species residents in the sheep (Ovis aries) rumen. Six cannulated male animals were used in the experiment, where three individuals were fed on a diet consisting of 70% forage and 30% concentrate (control treatment), and three were fed on a similar diet, but with sugarcane bagasse replacing 14% of the forage portion (bagasse treatment). The ruminal content (i.e., liquid and fiber) were sampled every two weeks during 60 days. From these samples, the structure and composition of the microbial community were assessed by total DNA extraction and amplification of V3 and V6-V7 regions of 16S rRNA gene from bacteria and the fungal intergenic region (ITS2). Furthermore, metagenomics and metatranscriptomics approaches were used to evaluate the enrichment of specific members of the microbial community in the ruminal fiber and genes related to lignocellulolytic enzymes. The liquid and fiber fractions of the O. aries rumen revealed a microbial community dominated mainly by Firmicutes and Bacteroidetes throughout the experimental period. The genera Prevotella and Ruminococcus accounted for 20% and 4% of the bacterial community of rumen, respectively. In the fungal community, the phylum Neocallimastigomycota accounted for 91% of sequences and its main genera adhered on the ruminal fiber were Piromyces, Neocallimastix, Orpinomyces, Anaeromyces, Caecomyces and Cyllamyces. The genus Caecomyces was significantly more abundant in the ruminal fiber in animals fed on sugarcane bagasse. Furthermore, there was a significant increase in the frequency of enzymes, such as α-1,4-glucan, α-galactosidase, endo- 1,4-β-xylanase, β-xylosidase, xylose isomerase, cellobiose phosphorylase and α- Narabinofuranosidase in the bagasse treatment. Considering that the recovery of enzymes from ecosystems naturally evolved for degradation of biomass is a promising strategy to overcome the current inefficient enzymatic action in industrial production of biofuels, the results of this study bring great possibilities to increase the discovery and or recovery of enzymes from ruminants, as well as the possibility of the ruminal microbiome structure manipulation to be used as source of an enriched inoculum for biomass degradation in industrial processes. (AU)