Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Characteristics and causes of Deep Western Boundary Current transport variability at 34.5 degrees S during 2009-2014

Full text
Author(s):
Meinen, Christopher S. ; Garzoli, Silvia L. ; Perez, Renellys C. ; Campos, Edmo ; Piola, Alberto R. ; Paz Chidichimo, Maria ; Dong, Shenfu ; Sato, Olga T.
Total Authors: 8
Document type: Journal article
Source: Ocean Science; v. 13, n. 1, p. 175-194, MAR 2 2017.
Web of Science Citations: 11
Abstract

The Deep Western Boundary Current (DWBC) at 34.5 degrees S in the South Atlantic carries a significant fraction of the cold deep limb of the Meridional Overturning Circulation (MOC), and therefore its variability affects the meridional heat transport and consequently the regional and global climate. Nearly 6 years of observations from a line of pressure-equipped inverted echo sounders (PIESs) have yielded an unprecedented data set for studying the characteristics of the time-varying DWBC volume transport at 34.5 degrees S. Furthermore, the horizontal resolution of the observing array was greatly improved in December 2012 with the addition of two current-and-pressure-equipped inverted echo sounders (CPIESs) at the midpoints of the two westernmost pairs of PIES moorings. Regular hydrographic sections along the PIES/CPIES line confirm the presence of recently ventilated North Atlantic Deep Water carried by the DWBC. The time-mean absolute geostrophic transport integrated within the DWBC layer, defined between 8004800 dbar and within longitude bounds of 51.5 to 44.5 degrees W, is -15 Sv (1 Sv = 10(6) m(3) s(-1); negative indicates southward flow). The observed peak-to-peak range in volume transport using these integration limits is from -89 to +50 Sv, and the temporal standard deviation is 23 Sv. Testing different vertical integration limits based on time-mean water-mass property levels yields small changes to these values, but no significant alteration to the character of the transport time se-ries. The time-mean southward DWBC flow at this latitude is confined west of 49.5 degrees W, with recirculations dominating the flow further offshore. As with other latitudes where the DWBC has been observed for multiple years, the time variability greatly exceeds the time mean, suggesting the presence of strong coherent vortices and/or Rossby Wave-like signals propagating to the boundary from the interior. (AU)

FAPESP's process: 11/50552-4 - Impact of the Southern Atlantic on the global overturning circulation (MOC) and climate (SAMOC)
Grantee:Edmo José Dias Campos
Support Opportunities: Research Program on Global Climate Change - Thematic Grants